水生生物学报 , 2023, 47(1):1-. doi:10.7541/2022.2021.0217
摘要:为研究虾急性肝胰腺坏死病(Acute Hepatopancreas Necrosis Disease, AHPND)的发生与环境、病原和虾体免疫间的相互关系, 文章对池塘养殖凡纳滨对虾(Litopenaeus vannamei)AHPND发生及其环境、病原、虾体免疫因子进行持续性跟踪监测。结果表明, 试验点的气温、水温、溶解氧(DO)、pH、盐度、氨氮(NH4-N)和亚硝态氮(NO2-N)波动范围为21—29℃、24.8—31℃、1.4—8.32 mg/L、8—8.91、34—50、0.01—0.26 mg/L和0.005—0.212 mg/L; 水体可培养细菌和弧菌数量变化范围为3×103—2.4×105和2×102—1.8×104 CFU/mL, 虾体肝胰腺内可培养细菌和弧菌数量变化范围为9.8×104—8.8×106和3.9×103—3.61×106 CFU/g; 16S rDNA鉴定结果显示, 在可培养优势菌株中, 弧菌检出数量达到135株, 占全部鉴定菌株的61.6%, 其中主要弧菌种类有欧文氏弧菌(Vibrio owensii)、坎贝氏弧菌(V. campbellii)、副溶血弧菌(V. parahaemolyticus)、溶藻弧菌(V. alginolyticus)和哈维氏弧菌(V. harveyi); 虾体中ACP、AKP、SOD、LZM和PO等免疫酶活的变化范围分别为7.5—75、1—8.5、2.4—11.07、1.3—43和6.23—28 U/mg。结合AHPND发生前后各理化因子变化的相关性分析表明, 水温、虾体肝胰腺内可培养细菌和弧菌数量、DO、LZM和PO可作为池塘养殖模式下对虾警示AHPND的指示因子。相关研究结果为指导池塘养殖凡纳滨对虾健康养殖及AHPND临床防控提供数据支撑和科学依据。
水产学报 , 2023, 47(1):019417-1-. doi:10.11964/jfc.20211013127
摘要:为评估基因型鉴定芯片在育种群体构建中的应用价值,实验对凡纳滨对虾3个群体 (EE、PP和SS)进行急性肝胰腺坏死病 (AHPND)副溶血弧菌 (VpAHPND)侵染实验,利用自主研发的40K SNP液相芯片“黄海芯1号”获得146尾个体的基因型信息,对群体遗传背景进行了系统调查并估算了AHPND抗性遗传力。VpAHPND浸染实验结果显示,不同群体间存在抗病差异,PP群体的存活性能比EE和SS群体分别高出12.9%和11.6%。利用质控后的38148个SNP信息构建系统进化树,结果显示群体内同一个家系的个体首先聚在一起,进而同属一个群体的多个家系聚在一起。主成分和遗传结构分析显示,可以准确地将146尾个体划分为3个组,与系统进化树聚类结果一致。遗传多样性分析显示,3个群体的观测杂合度 (Ho)平均值为0.25~0.29,多态信息含量 (PIC)平均值为0.20~0.23,上述遗传参数达到极显著水平。3个群体间的遗传分化系数 (FST)为0.11~0.21,存在中高度遗传分化。基因组近交分析表明,EE、PP和SS群体的近交系数均值分别为−0.05±0.06、0.20±0.09和0.37±0.07,后2个群体内部分个体表现出较高的近交水平。使用ssGBLUP-MF (Single Step Genomic BLUP with Metafounders)模型,复合基因型、表型和系谱信息,获得VpAHPND侵染后存活状态的遗传力估计值为0.24±0.07,表现为中等水平,表明基础群体具有较好的选育潜力。研究表明,利用液相芯片“黄海芯1号”开展辅助育种,可以进一步提高基础群体构建和评估的效率。
水产学报 , 2023, 47(1):019612-1-. doi:10.11964/jfc.20221113779
摘要:为评估不同SNP标记密度对凡纳滨对虾AHPND抗性基因组预测准确性的影响,本实验对26个全同胞家系进行VpAHPND侵染,收集686尾个体的存活时间数据,对其中242尾个体利用液相芯片“黄海芯1号” (55.0 K SNP)进行基因分型,基于A、G和H亲缘关系矩阵估计VpAHPND侵染后存活时间的遗传参数;采用随机和等距抽取方式,基于55.0 K SNP构建了8个低密度SNP面板 (40.0、30.0、20.0、10.0、5.0、1.0、0.5和0.1 K),利用GBLUP和ssGBLUP等方法预测VpAHPND侵染后存活时间的基因组育种值,利用交叉验证方法计算其预测准确性,并与BLUP方法进行对比分析。遗传参数估计结果显示,VpAHPND侵染后存活时间表现为高遗传力水平,估计值为0.68~0.79。在55.0 K SNP密度下,针对242尾基因分型个体数据集 (G242),利用BLUP、GBLUP和ssGBLUP方法获得的预测准确性分别为0.424、0.450和0.452,GBLUP和ssGBLUP比BLUP分别提升了6.13%和6.60%;针对686尾表型测定个体数据集 (P686),利用BLUP和ssGBLUP方法获得的预测准确性分别为0.510和0.535,后者比前者提升了4.90%。对于8个低密度SNP面板,当SNP密度≥10.0 K时,基因组预测准确性变化幅度在G242和P686数据集中均较小 (1.1%~1.8%);随着SNP密度自10.0 K不断降低,基因组预测准确性在2个数据集中也不断降低,其中5.0 K密度降幅为0.6%~2.6%、1.0 K密度降幅为5.8%~11.0%、0.5 K密度降幅为11.4%~17.2%、0.1 K密度降幅为38.8%~41.6%。10.0 K与55.0 K SNP密度间基因组亲缘系数、GEBV的相关系数均高于0.99,表明利用10.0 K SNP面板可以准确地预测同胞个体间的亲缘关系及其GEBV。研究表明,使用10.0 K SNP面板对VpAHPND侵染后存活时间进行基因组遗传评估可以得到与55.0 K SNP芯片近似的预测准确性,为低密度SNP分型芯片设计提供了参考。
渔业科学进展 , 2018, 39(3):103-. doi:10.19663/j.issn2095-9869.20170222001
摘要:本研究从患急性肝胰腺坏死病(Acute hepatopancreatic necrosis disease,AHPND)的凡纳滨对虾(Litopenaeus vannamei)肝胰腺中分离到一株优势菌,编号为20160303005-1,通过16S rRNA和分子伴侣蛋白groEL基因序列分析,并结合生理生化特征,将该细菌鉴定为副溶血弧菌(Vibrio parahaemolyticus),其血清型为O1:KUT(K untypeable)。基因分析结果显示,该菌株携带可引起对虾AHPND的相关毒力蛋白基因pirAVPpirBVP,但不携带副溶血弧菌临床菌株毒力基因:耐热直接溶血毒素(Thenmostable direct hemolysin,tdh)和相对耐热直接溶血毒素(TDH-related hemolysin,trh)基因。菌株对凡纳滨对虾具有较强的致病性,浸泡感染的半数致死剂量(LD50)为7.96×103 CFU/ml。对虾急性感染后,6 h肝胰腺颜色变浅,肠胃变空;9 h肝胰腺呈浅白色,萎缩变小。9 h死亡数过半,24 h全部死亡。组织病理学分析显示,感染后对虾肝胰腺小管崩塌,上皮细胞严重脱落,呈现出典型的AHPND病理症状。药敏实验结果显示,该菌对庆大霉素、环丙沙星和头孢他啶等16种药物敏感,对阿莫西林、替卡西林和头孢噻吩等5种药物表现为耐药。上述研究可为该病原的流行病学及药物防控研究提供基本数据。
渔业科学进展 , 2023, 44(3):235-. doi:10.19663/j.issn2095-9869.20221011001
摘要:急性肝胰腺坏死病(AHPND)是对虾养殖过程中最常见、最严重的疾病,给对虾养殖造成重大经济损失。AHPND病原种类多、基因型复杂,现有的针对不同病原的检测技术目标导向较弱、检测成本高、时间消耗长,对虾健康养殖亟待开发AHPND的精准快速诊断技术。本研究针对AHPND病原体携带编码一种二元毒素pirApirB大型质粒的遗传共性,基于pirApirB基因设计特异性引物并建立微流控荧光定量PCR检测方法。该方法对致病基因pirApirB特异性强、灵敏度高,最低检测限分别为5.43×100和4.31×101copies/μL,样品平均检测时间为26 min左右。为进一步评估该方法在实际应用中的准确性,以含有pirApirB毒性质粒的副溶血弧菌(Vibrio parahaemolyticus)进行人工感染实验。结果表明,感染后的凡纳滨对虾(Litopenaeus vannamei)鳃丝、肝胰腺、肠道和肌肉等组织随时间的推迟均能检测到pirApirB;从感染2 h的结果来看,pirBpirA检出率更高。此外,致病因子pirApirBtoxR的检出率更高,更适合对AHPND致病原的检测。本研究建立的微流控荧光定量PCR检测的方法具有快速、灵敏、高通量、污染少、现场检测、一体化集成等优点。该技术不仅适用于实验室,更符合养殖基层的现场快速检测需求,为及早认知疾病发生风险和病害精准防控提供了新的技术手段与理论支撑。