首页 >  集美大学学报(自然科学版) >  空间分数阶扩散方程的多项式点插值配置法

2018, 23(2): 150-155.

空间分数阶扩散方程的多项式点插值配置法

福建广播电视大学三明分校, 福建 三明 365000

收稿日期:2017-08-03
修回日期:2017-10-10

关键词: 空间分数阶微分方程 , 多项式基 , 配置法 , Riemann-Liouville分数阶导数 , 形函数

Polynomial Point Interpolation Collocation Method for Spatial Fractional Diffusion Equation

Sanming Branch, The Open University of Fujian, Sanming 365000, China

Received Date:2017-08-03
Accepted Date:2017-10-10

Keywords: spatial fractional differential equation , polynomial , collocation method , Riemann-Liouville fractional derivative , shape function

摘要

)采用多项式基点插值配置法求解带有双侧导数的空间分数阶微分方程。首先给出利用多项式基点插值离散得到的数值逼近格式,然后给出数值算例,分别采用规则点和散点离散空间变量,均得到近似程度较好的计算结果,很好地验证了所提出数值方法的有效性。

)采用多项式基点插值配置法求解带有双侧导数的空间分数阶微分方程。首先给出利用多项式基点插值离散得到的数值逼近格式,然后给出数值算例,分别采用规则点和散点离散空间变量,均得到近似程度较好的计算结果,很好地验证了所提出数值方法的有效性。

参考文献

[1] HAVLIN S,BEN-AVRAHAM D.Diffusion in disordered media:advances in physics[J].2002,51:187-292.DOI:10.1016/0169-7439(91)80040-W.
[2] ATHAR M,FETECAU C.Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate[J].Computers and Mathematics with Applications, 2009,57:596-603.DOI:10.1016/j.camwa.2008.09.052.
[3] YANG D,ZHU K Q.Start-up flow of a viscoelastic fluid in a pipe with the fractional Maxwell's model[J].Computers & Mathematics with Applications,2010,60(8):2231-2238.DOI:10.1016/j.camwa.2010.08.013.
[4] 王建宏,殷姝.一类分数阶混沌系统的滑膜控制[J].机械制造与自动化,2016,45(3):180-183.DOI:10.19344/j.cnki.issn1671-5276.2016.03.054.
[5] LIU F,ANH V,TURNER I,et al.Numerical simulation for solute transport in fractal porous media[J].Australian and New Zealand Industrial and Applied Mathematics Journal,2004,45:461-473.DOI:10.21914/ANZIAMJ.V45I0.901.
[6] ROOP J P.Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R2[J].Journal of Computational and Applied Mathematics,2006,193(1):243-268.DOI:10.1016/j.cam.2005.06.005.
[7] LIN Y M,XU C J.Finite difference/spectral approximations for the time-fractional diffusion equation[J].Journal of Computational Physics,2007,225(2):1079-1095.DOI:10.1016/j.jcp.2007.02.001.
[8] LANGLANDS T,HENRY B,WEARNE S.Solutions of a fractional cable equation:finite case[R].Sydney:University of New South Wales,2005.
[9] LIU Q,GU Y T,ZHUANG P,et al.An implicit RBF meshless approach for time fractional diffusion equations[J].Computational Mechanics,2011,48:1-12.DOI:10.1007/s00466-011-0573-x.
[10] LI C,DENG W H,SHEN X Q.Exact solutions and their asymptotic behaviors for the averaged generalized fractional elastic models[J].Communications in Theoretical Physics,2014,62(4):443-450.
[11] ZHUANG P,LIU F,TURNER I,et al.Galerkin finite element method and error analysis for the fractional cable equation[J].Numerical Algorithms,2016,72:447-466.DOI:10.1007/s11075-015-0055-x.
[12] ZENG F H,LIU F W,LI C P,et al. A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation[J].SIAM Journal on Numerical Analysis,2014,52(6):2599-2622.DOI:10.1137/130934192.
[13] ZHAO Y Z,BU W B,HUANG J F,et al.Finite element method for two-dimensional space-fractional advection-dispersion equations[J].Applied Mathematics and Computation,2015,257:553-565.DOI:10.1016/j.amc.2015.01.016.
[14] ZHANG Y X,DING H F.High-order algorithm for the two-dimension Riesz space-fractional diffusion equation[J].International Journal of Computer Mathematics,2017,94(10):2063-2073.DOI:10.1080/00207160.2016.1274746.
[15] LIU G R.Mesh free methods:moving beyond the finite element method[M].Boca Raton:CRC Press,2005.
[16] PODLUBNY I.Fractional differential equations[M].NewYork:Academic Press,1999.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

空间分数阶扩散方程的多项式点插值配置法