首页 >  集美大学学报(自然科学版) >  低盐虾塘浮游生物群落及摄食研究

2018, 23(2): 99-104.

低盐虾塘浮游生物群落及摄食研究

1. 集美大学水产学院, 福建 厦门 361021;

2. 鳗鲡现代产业技术教育部工程研究中心, 福建 厦门 361021

收稿日期:2018-01-23
修回日期:2018-02-28

基金项目:   福建省自然科学基金项目(2015J01617);集美大学李尚大基金项目(ZC2011009);鳗鲡现代产业技术教育部工程研究中心开放基金(B16157) 

关键词: 低盐虾塘 , 浮游生物 , 群落结构 , 微型浮游动物

Study on Plankton Community Structure and Microzooplankton Grazing in Low Salinity Shrimp Pond

1. Fisheries College, Jimei University, Xiamen, 361021, China;

2. Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, China

Received Date:2018-01-23
Accepted Date:2018-02-28

Keywords: low salinity shrimp ponds , plankton , community structure , microzooplankton

摘要

2017年5月5日,于福建厦门杏林浦林村对4口处于不同养殖阶段的凡纳滨对虾(Litopenaeus vannamei)低盐虾塘进行了浮游生物群落调查,并运用“稀释法”研究了微型浮游动物对浮游植物的摄食压力。结果表明,在养殖过程中,浮游植物群落从以绿藻和硅藻为主,逐渐转变为以丝状蓝藻为主的类型,绿藻优势种主要有二形栅藻(Scenedesmu dimorphus)、波吉卵囊藻(Oocystis borgei)和纤维藻(Ankistrodesmus spp.),蓝藻优势种主要为伪鱼腥藻(Pseudanabaena sp.)、鞘丝藻(Planktolyngbya sp.)、弱细颤藻(Oscillatoria tenuis)和微小平裂藻(Merismopedia tenuissima)。微型浮游动物主要为原生动物和轮虫,其中原生动物以旋急游虫(Strombidium spiralis)和单环栉毛虫(Didinium balbianii)为普遍的优势种类,轮虫主要有前额犀轮虫(Hinoglena frontalis)和壶状臂尾轮虫(Rachionus urceus)。微型浮游动物对浮游植物的摄食率为0.55~0.85/d,浮游植物的生长率为1.42~3.16/d。微型浮游动物对浮游植物现存量的摄食压力为42.31%~57.26%,对浮游植物初级生产力的摄食压力为46.39%~59.80%,显示微型浮游动物在虾塘能量流动和物质循环方面起着重要的作用。

2017年5月5日,于福建厦门杏林浦林村对4口处于不同养殖阶段的凡纳滨对虾(Litopenaeus vannamei)低盐虾塘进行了浮游生物群落调查,并运用“稀释法”研究了微型浮游动物对浮游植物的摄食压力。结果表明,在养殖过程中,浮游植物群落从以绿藻和硅藻为主,逐渐转变为以丝状蓝藻为主的类型,绿藻优势种主要有二形栅藻(Scenedesmu dimorphus)、波吉卵囊藻(Oocystis borgei)和纤维藻(Ankistrodesmus spp.),蓝藻优势种主要为伪鱼腥藻(Pseudanabaena sp.)、鞘丝藻(Planktolyngbya sp.)、弱细颤藻(Oscillatoria tenuis)和微小平裂藻(Merismopedia tenuissima)。微型浮游动物主要为原生动物和轮虫,其中原生动物以旋急游虫(Strombidium spiralis)和单环栉毛虫(Didinium balbianii)为普遍的优势种类,轮虫主要有前额犀轮虫(Hinoglena frontalis)和壶状臂尾轮虫(Rachionus urceus)。微型浮游动物对浮游植物的摄食率为0.55~0.85/d,浮游植物的生长率为1.42~3.16/d。微型浮游动物对浮游植物现存量的摄食压力为42.31%~57.26%,对浮游植物初级生产力的摄食压力为46.39%~59.80%,显示微型浮游动物在虾塘能量流动和物质循环方面起着重要的作用。

参考文献

[1] 曾建刚,蒋霞敏.对虾养殖塘浮游植物的动态变化[J].海洋湖沼通报,2010(1):71-81.
[2] 彭聪聪,李卓佳,曹煜成,等.凡纳滨对虾半集约化养殖池塘浮游微藻优势种变动规律及其对养殖环境的影响[J].海洋环境科学,2011,30(2):193-198.
[3] 查广才,麦雄伟,周昌清,等.凡纳滨对虾低盐度养殖池浮游藻类群落研究[J].海洋水产研究,2006,27(1):1-7.
[4] 李由明,黄翔鹄,李晓梅.凡纳滨对虾养殖水体中浮游植物群落的组成分析[J].琼州学院学报,2012,19(5):42-45.
[5] 晏军,张玉平,孙振中,等.鱼、虾和蟹塘浮游甲壳动物群落结构分析与讨论[J].水产科技情报,2015,42(4):169-174.
[6] 吴礼广,王伟洪,宋飞彪,等.南美白对虾大棚养殖池浮游动物的种群动态与调控研究[J].农村经济与科技,2013,24(4):165-166.
[7] 查广才,周昌清,黄建荣,等.凡纳对虾淡化养殖虾池微型浮游生物群落及多样性[J].生态学报,2004,2(8):1752-1759.
[8] 陈辉煌.凡纳滨对虾低盐综合养殖池塘浮游生物群落结构的研究[D].宁波:宁波大学,2013.
[9] 何京,陈晨,王一农,等.凡纳滨对虾设施养殖池塘浮游生物群落结构及多样性研究[J].生物学杂志,2015,32(3):58-62.
[10] LANDRY M R,HASSETT R P.Estimating the grazing impact of marine microzooplankton[J].Mar Biol,1982,67:283- 288.
[11] CALBET A,LANDRY M R.Phytoplankton growth,microzooplankton grazing,and carbon cycling in marine systems[J].Limnology and Oceanography,2004,49:51-57.
[12] 段翠兰,陈静,张永江,等.大型浅水湖泊太湖中微型浮游动物的摄食生态研究[J].安徽科技学院学报,2016,30(3):44-49.
[13] 陈默,高光,朱丽萍,等.太湖水体中微型原生动物对细菌的捕食作用[J].应用生态学报,2007,18(10):2384-2388.
[14] 沈锦兰,林元烧,杨圣云,等.厦门杏林虾池夏冬季微型浮游动物对浮游植物的摄食压力[J].台湾海峡,2002(1):31-36.
[15] 张立通,孙耀,赵从明,等.虾塘养殖中后期微型浮游动物的摄食压力[J].生态学报,2011,31(7):2046-2052.
[16] VERITY P G,STOECKER D K,SIERACKI M E,et al.Grazing,growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47°N,18°W[J].Deep Sea Res I,1993,40:1793-1814.
[17] 彭聪聪,李卓佳,曹煜成,等.虾池浮游微藻与养殖水环境调控的研究概况[J].南方水产,2010(5):74-80.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

低盐虾塘浮游生物群落及摄食研究