• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-3207

主管 中国科学院

主办 中国科学院水生生物研究所、中国海洋湖沼学会

芽孢表面展示系统及其在水产疫苗研发中的应用

2024. 芽孢表面展示系统及其在水产疫苗研发中的应用. 水生生物学报, 48(4): 694-706. doi: 10.7541/2024.2023.0259
引用本文: 2024. 芽孢表面展示系统及其在水产疫苗研发中的应用. 水生生物学报, 48(4): 694-706. doi: 10.7541/2024.2023.0259
ZAN Zi-Ye, KE Fei, ZHAO Wei-Shan, ZOU Hong, WANG Gui-Tang, WU Shan-Gong. 2024. SPORE SURFACE DISPLAY SYSTEM AND ITS APPLICATION IN AQUATIC VACCINE DEVELOPMENT. ACTA HYDROBIOLOGICA SINICA, 48(4): 694-706. doi: 10.7541/2024.2023.0259
Citation: ZAN Zi-Ye, KE Fei, ZHAO Wei-Shan, ZOU Hong, WANG Gui-Tang, WU Shan-Gong. 2024. SPORE SURFACE DISPLAY SYSTEM AND ITS APPLICATION IN AQUATIC VACCINE DEVELOPMENT. ACTA HYDROBIOLOGICA SINICA, 48(4): 694-706. doi: 10.7541/2024.2023.0259

芽孢表面展示系统及其在水产疫苗研发中的应用

  • 基金项目:

    国家自然科学基金(31872612); 现代农业产业技术体系建设专项(CARS-45-15)资助

详细信息
    作者简介:

    昝子叶(1999—), 女, 硕士研究生; 主要研究方向为微生物学。E-mail: zanziye@ihb.ac.cn

    通讯作者: 吴山功(1974—), 男, 研究员; 主要研究方向为微生物学。E-mail: wusgz@ihb.ac.cn
  • 中图分类号: S942.5

SPORE SURFACE DISPLAY SYSTEM AND ITS APPLICATION IN AQUATIC VACCINE DEVELOPMENT

  • Fund Project: 国家自然科学基金(31872612); 现代农业产业技术体系建设专项(CARS-45-15)资助
More Information
  • 水产养殖动物疾病的发生日益频繁, 给整个行业造成了巨大的经济损失。口服疫苗可以有效预防疾病的发生, 同时不会造成应激反应, 更适用于水产动物疾病的预防。芽孢杆菌是水产中常用益生菌, 能够形成抗逆性强的芽孢, 芽孢能够被用来构建芽孢表面展示系统, 进而成为抗原呈递的理想平台。因而, 利用芽孢表面展示口服疫苗并将抗原稳定地呈递到肠道, 发挥更加高效的免疫性能的研究受到了越来越多的关注。文章综述了芽孢杆菌芽孢和感受态, 以及芽孢表面展示系统, 此外, 还特别概述了芽孢作为口服疫苗载体在预防水产动物细菌病、病毒病和寄生虫病方面的研究与应用, 以期为水产养殖动物高效稳定口服疫苗的开发提供参考。
  • 加载中
  • 图 1  芽孢结构示意图

    Figure 1.  Schematic diagram of the spore structure

    图 2  基因重组法构建芽孢表面展示系统示意图

    Figure 2.  Schematic representation of spore surface display system constructed by genetic recombination strategy

    表 1  芽孢表面展示系统在水产疫苗研发中的研究进展

    Table 1.  Research progress of spore surface display systems in aquatic vaccine development

    病原体
    Pathogenic agent
    宿主菌
    B. subtilis
    目的蛋白
    Target protein
    锚定蛋白
    Anchor protein
    连接肽及融合方式
    Linker peptide and fusion mode
    表达载体
    Expression vector
    参考文献
    Reference
    无乳链球菌
    Streptococcus agalactiae
    GC5SipCotC(GGGGS)3
    C端融合
    PamyE[96]
    弧菌Vibrio168OmpKCotYC、N端融合pDG364[19]
    白斑综合征病毒
    White Spot Syndrome Virus
    168VP28CotB
    CotC
    C端融合pMutin 4[114]
    DB431
    BB80
    VP26
    VP28
    CotCC端融合pDG1662[115]
    PY79VP28CotBpDG364[93]
    PY79VP28CotB[116]
    草鱼呼肠孤病毒
    Grass Carp Reovirus
    WB600VP4CotCPEB03[101]
    WB600VP4CotCC端融合PEB03[102]
    GC5VP4
    NS38
    CotC(GGGGS)3[103]
    168VP7CotB
    CotC
    C端融合pJS1956
    pJS1985
    [104]
    WB600VP56CotCC端融合pHT304[105]
    大口黑鲈蛙虹彩病毒
    Largemouth Bass Virus
    WB600MCPCotCPEB03[111]
    神经坏死病毒
    Nervous Necrosis Virus
    WB600MCPCotCC端融合PEB03[20]
    华支睾吸虫
    Clonorchis sinensis
    WB600CsENOCotCPEB03[123]
    WB600CsCPCotCPEB03[121]
    WB600CsPmyCotC[18]
    注: “—”表示文章中未提及Note: “—” means not mentioned in the article
    下载: 导出CSV
  • Adams A. Progress, challenges and opportunities in fish vaccine development [J]. Fish & Shellfish Immunology, 2019(90): 210-214.

    Watts J E M, Schreier H J, Lanska L, et al. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions [J]. Marine Drugs, 2017, 15(6): 158. doi: 10.3390/md15060158

    Wang Q, Ji W, Xu Z. Current use and development of fish vaccines in China [J]. Fish & Shellfish Immunology, 2020(96): 223-234.

    Kuebutornye F K A, Abarike E D, Lu Y. A review on the application of Bacillus as probiotics in aquaculture [J]. Fish & Shellfish Immunology, 2019(87): 820-828.

    Olmos J, Acosta M, Mendoza G, et al. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution [J]. Archives of Microbiology, 2020, 202(3): 427-435. doi: 10.1007/s00203-019-01757-2

    Kang Q, Xiang M J, Zhang D W. Research progress and industrial application of Bacillus subtilis in systematic and synthetic biotechnology [J]. Chinese Journal of Biotechnology, 2021, 37(3): 923-938.

    Sergio R M, Carlos A. Bacillus subtilis comes of age as a vaccine production host and delivery vehicle [J]. Expert Review of Vaccines, 2015, 14(8): 1135-48.

    Dai X, Liu M, Pan K, et al. Surface display of OmpC of Salmonella serovar pullorum on Bacillus subtilis spores [J]. PLoS One, 2018, 13(1): e0191627. doi: 10.1371/journal.pone.0191627

    Rostami A, Hinc K, Goshadrou F, et al. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide [J]. Pesticide Biochemistry and Physiology, 2017(140): 17-23.

    Wang F, Song T, Jiang H, et al. Bacillus subtilis spore surface display of haloalkane dehalogenase DhaA [J]. Current Microbiology, 2019, 76(10): 1161-1167. doi: 10.1007/s00284-019-01723-7

    Hinc K, Ghandili S, Karbalaee G, et al. Efficient binding of nickel ions to recombinant Bacillus subtilis spores [J]. Research in Microbiology, 2010, 161(9): 757-764. doi: 10.1016/j.resmic.2010.07.008

    Cho E A, Seo J, Lee D W, et al. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores [J]. Enzyme and Microbial Technology, 2011, 49(1): 100-104. doi: 10.1016/j.enzmictec.2011.03.005

    Qian L, Liu Y F, Li J H, et al. Regulating the synthesis of N-acetylneuraminic acid based on adaptive evolution and plasmid stability modification in Bacillus subtilis [J]. Food and Fermentation Industries, 2021, 47(5): 1-6.

    Zhang G, An Y, Zabed H, et al. Bacillus subtilis spore surface display technology: a review of its development and applications [J]. Journal of Microbiology and Biotechnology, 2019, 29(2): 179-190. doi: 10.4014/jmb.1807.06066

    Hu B, Li C, Lu H, et al. Immune responses to the oral administration of recombinant Bacillus subtilis expressing multi-epitopes of foot-and-mouth disease virus and a cholera toxin B subunit [J]. Journal of Virological Methods, 2011, 171(1): 272-279. doi: 10.1016/j.jviromet.2010.11.023

    Das K, Thomas T, Garnica O, et al. Recombinant Bacillus subtilis spores for the delivery of Mycobacterium tuberculosis Ag85B-CFP10 secretory antigens [J]. Tuberculosis, 2016(101): S18-S27.

    Mou C, Zhu L, Xing X, et al. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs [J]. Antiviral Research, 2016(131): 74-84.

    Sun H, Shang M, Tang Z, et al. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from cercaria infection [J]. Applied Microbiology and Biotechnology, 2020, 104(4): 1633-1646. doi: 10.1007/s00253-019-10316-0

    Gabriela G, Santos Rafaela A, Filipe C, et al. Oral vaccination of fish against vibriosis using spore-display technology [J]. Frontiers in Immunology, 2022(13): 1012301.

    Wang Q, Liang X, Ning Y, et al. Surface display of major capsid protein on Bacillus subtilis spores against largemouth bass virus (LMBV) for oral administration [J]. Fish & Shellfish Immunology, 2023(135): 108627.

    Grossman A D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis [J]. Annual Review of Genetics, 1995(29): 477-508.

    Schultz D, Wolynes P G, Ben Jacob E, et al. Deciding fate in adverse times: Sporulation and competence in Bacillus subtilis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21027-21034.

    Kaufenstein M, van der Laan M, Graumann P L. The three-layered DNA uptake machinery at the cell pole in competent Bacillus subtilis cells is a stable complex [J]. Journal of Bacteriology, 2011, 193(7): 1633-1642. doi: 10.1128/JB.01128-10

    Lu Z H, Zhou Y L, Zhang X Z, et al. Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis [J]. Chinese Journal of Biotechnology, 2015, 31(11): 1543-1552.

    Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals [J]. Journal of Applied Microbiology, 2006, 101(3): 514-525. doi: 10.1111/j.1365-2672.2005.02736.x

    Eijlander R T, de Jong A, Krawczyk A O, et al. SporeWeb: an interactive journey through the complete sporulation cycle of Bacillus subtilis [J]. Nucleic Acids Research, 2014, 42(D1): D685-D691. doi: 10.1093/nar/gkt1007

    Setlow P. Spore resistance properties [J]. Microbiology Spectrum, 2014, 2(5): 1-14.

    Kim J, Schumann W. Display of proteins on Bacillus subtilis endospores [J]. Cellular and Molecular Life Sciences, 2009, 66(19): 3127-3136. doi: 10.1007/s00018-009-0067-6

    Moeller R, Schuerger A C, Reitz G, et al. Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated Mars surface conditions [J]. Applied and Environmental Microbiology, 2012, 78(24): 8849-8853. doi: 10.1128/AEM.02527-12

    Zhang D C, Zhang Y J, Sun Y, et al. Research progress on formation, germination and control methods of bacterial spores [J]. Science and Technology of Food Industry, 2023, 44(15): 463-473.

    Leggett M J, McDonnell G, Denyer S P, et al. Bacterial spore structures and their protective role in biocide resistance [J]. Journal of Applied Microbiology, 2012, 113(3): 485-498. doi: 10.1111/j.1365-2672.2012.05336.x

    Dubnau D. DNA uptake in bacteria [J]. Annual Review of Microbiology, 1999(53): 217-244.

    Palchevskiy V, Finkel S E. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient [J]. Journal of Bacteriology, 2006, 188(11): 3902-3910. doi: 10.1128/JB.01974-05

    Johnsen P J, Dubnau D, Levin B R. Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis [J]. Genetics, 2009, 181(4): 1521-1533. doi: 10.1534/genetics.108.099523

    Shank E A, Kolter R. Extracellular signaling and multicellularity in Bacillus subtilis [J]. Current Opinion in Microbiology, 2011, 14(6): 741-747. doi: 10.1016/j.mib.2011.09.016

    Oslizlo A, Stefanic P, Dogsa I, et al. Private link between signal and response in Bacillus subtilis quorum sensing [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1586-1591.

    Isticato R, Cangiano G, Tran H T, et al. Surface display of recombinant proteins on Bacillus subtilis spores [J]. Journal of Bacteriology, 2001, 183(21): 6294-6301. doi: 10.1128/JB.183.21.6294-6301.2001

    Kim J H, Lee C S, Kim B G. Spore-displayed streptavidin: a live diagnostic tool in biotechnology [J]. Biochemical and Biophysical Research Communications, 2005, 331(1): 210-214. doi: 10.1016/j.bbrc.2005.03.144

    Pan J G, Kim E J, Yun C H. Bacillus spore display [J]. Trends in Biotechnology, 2012, 30(12): 610-612. doi: 10.1016/j.tibtech.2012.09.005

    Driks A. Overview: development in bacteria: spore formation in Bacillus subtilis [J]. Cellular and Molecular Life Sciences, 2002, 59(3): 389-391. doi: 10.1007/s00018-002-8430-x

    Yim S K, Jung H C, Yun C H, et al. Functional expression in Bacillus subtilis of mammalian NADPH-cytochrome P450 oxidoreductase and its spore-display [J]. Protein Expression and Purification, 2009, 63(1): 5-11. doi: 10.1016/j.pep.2008.07.004

    Wang N, Chang C, Yao Q, et al. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions [J]. PLoS One, 2011, 6(6): e21454. doi: 10.1371/journal.pone.0021454

    Kwon S J, Jung H C, Pan J G. Transgalactosylation in a water-solvent biphasic reaction system with beta-galactosidase displayed on the surfaces of Bacillus subtilis spores [J]. Applied and Environmental Microbiology, 2007, 73(7): 2251-2256. doi: 10.1128/AEM.01489-06

    Du C, Chan W C, McKeithan T W, et al. Surface display of recombinant proteins on Bacillus thuringiensis spores [J]. Applied and Environmental Microbiology, 2005, 71(6): 3337-3341. doi: 10.1128/AEM.71.6.3337-3341.2005

    Thompson B M, Stewart G C. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface [J]. Molecular Microbiology, 2008, 70(2): 421-434. doi: 10.1111/j.1365-2958.2008.06420.x

    Gu Y, Xu X, Wu Y, et al. Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications [J]. Metabolic Engineering, 2018(50): 109-121.

    Wang X Q, Zhao D L, Shen L L, et al. Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease [M]. Role of Rhizospheric Microbes in Soil. Singapore: Springer, 2018: 225-250.

    Zhang X, Al-Dossary A, Hussain M, et al. Applications of Bacillus subtilis spores in biotechnology and advanced materials [J]. Applied and Environmental Microbiology, 2020, 86(17): e01096-e01020.

    Nayak S K. Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis [J]. Reviews in Aquaculture, 2021, 13(2): 862-906. doi: 10.1111/raq.12503

    Palma L, Muñoz D, Berry C, et al. Bacillus thuringiensis toxins: an overview of their biocidal activity [J]. Toxins, 2014, 6(12): 3296-3325. doi: 10.3390/toxins6123296

    Henriques A O, Moran C P Jr. Structure, assembly, and function of the spore surface layers [J]. Annual Review of Microbiology, 2007(61): 555-588.

    McKenney P T, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat [J]. Nature Reviews Microbiology, 2013, 11(1): 33-44. doi: 10.1038/nrmicro2921

    Chen T Y, Dong S G, Tian W H, et al. Effect of Bacillus subtilis strain BS-3 inhibiting the growth of six enteric bacteria [J]. Journal of Microbiology, 2004, 24(5): 74-76.

    Spizizen J. Transformation of biochemically deficient strains of bacillus subtilis by deoxyribonucleate [J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44(10): 1072-1078.

    Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis [J]. Journal of Bacteriology, 1961, 81(5): 741-746. doi: 10.1128/jb.81.5.741-746.1961

    Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis [J]. Nature, 1997, 390(6657): 249-256. doi: 10.1038/36786

    Wang H, Wang Y, Yang R. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future [J]. Applied Microbiology and Biotechnology, 2017, 101(3): 933-949. doi: 10.1007/s00253-016-8080-9

    Song T Y, Yu T, Jiang H. Research progress on Bacillus subtilis spore surface display [J]. Life Science Instruments, 2016, 14(S1): 23-28.

    Chen H, Zhang T, Jia J, et al. Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein [J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(11): 1439-1448.

    Duc L H, Hong H A, Atkins H S, et al. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen [J]. Vaccine, 2007, 25(2): 346-355. doi: 10.1016/j.vaccine.2006.07.037

    Negri A, Potocki W, Iwanicki A, et al. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores [J]. Journal of Medical Microbiology, 2013, 62(9): 1379-1385. doi: 10.1099/jmm.0.057372-0

    Mauriello E M F, Duc L H, Isticato R, et al. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner [J]. Vaccine, 2004, 22(9/10): 1177-1187.

    D’Apice L, Sartorius R, Caivano A, et al. Comparative analysis of new innovative vaccine formulations based on the use of procaryotic display systems [J]. Vaccine, 2007, 25(11): 1993-2000. doi: 10.1016/j.vaccine.2006.11.047

    Isticato R, Scotto Di Mase D, Mauriello E M F, et al. Amino terminal fusion of heterologous proteins to CotC increases display efficiencies in the Bacillus subtilis spore system [J]. Biotechniques, 2007, 42(2): 151-156. doi: 10.2144/000112329

    Hinc K, Isticato R, Dembek M, et al. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores [J]. Microbial Cell Factories, 2010(9): 2.

    Tavassoli S, Hinc K, Iwanicki A, et al. Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst [J]. Archives of Microbiology, 2013, 195(3): 197-202. doi: 10.1007/s00203-013-0867-9

    Xu X, Gao C, Zhang X, et al. Production of N-acetyl-D-neuraminic acid by use of an efficient spore surface display system [J]. Applied and Environmental Microbiology, 2011, 77(10): 3197-3201. doi: 10.1128/AEM.00151-11

    Hwang B Y, Kim B G, Kim J H. Bacterial surface display of a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system [J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(9): 1862-1865. doi: 10.1271/bbb.110307

    Chen H, Chen Z, Ni Z, et al. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner [J]. Journal of Molecular Catalysis B:Enzymatic, 2016(123): 73-80.

    Li Q, Ning D G, Wu C D. Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores [J]. Chinese Journal of Biotechnology, 2010, 26(2): 264-269.

    Wang H, Yang R, Hua X, et al. Functional display of active β-galactosidase on Bacillus subtilis spores using crust proteins as carriers [J]. Food Science and Biotechnology, 2015, 24(5): 1755-1759. doi: 10.1007/s10068-015-0228-3

    Potot S, Serra C R, Henriques A O, et al. Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier [J]. Applied and Environmental Microbiology, 2010, 76(17): 5926-5933. doi: 10.1128/AEM.01103-10

    Potocki W, Negri A, Peszyńska-Sularz G, et al. The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore [J]. Microbial Cell Factories, 2017, 16(1): 151. doi: 10.1186/s12934-017-0765-y

    Li W J, Liu M G, Li J Z, et al. Research progress on Bacillus subtilis surface display technology for mucosal vaccine [J]. Acta Microbiologica Sinica, 2022, 62(1): 65-76.

    Zhang G Y, Zhang H H, Yun J H, et al. Technique and application of recombinant Bacillus subtilis spore surface display [J]. Guangxi Sciences, 2018, 25(3): 242-247.

    Härtl B, Wehrl W, Wiegert T, et al. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes [J]. Journal of Bacteriology, 183(14): 4393.

    Guérout-Fleury A M, Frandsen N, Stragier P. Plasmids for ectopic integration in Bacillus subtilis [J]. Gene, 1996, 180(1/2): 57-61.

    Middleton R, Hofmeister A. New shuttle vectors for ectopic insertion of genes into Bacillus subtilis [J]. Plasmid, 2004, 51(3): 238-245. doi: 10.1016/j.plasmid.2004.01.006

    Melnikov A, Youngman P J. Random mutagenesis by recombinational capture of PCR products in Bacillus subtilis and Acinetobacter calcoaceticus [J]. Nucleic Acids Research, 1999, 27(4): 1056-1062. doi: 10.1093/nar/27.4.1056

    Bron S, Luxen E, Swart P. Instability of recombinant pUB110 plasmids in Bacillus subtilis: Plasmid-encoded stability function and effects of DNA inserts [J]. Plasmid, 1988, 19(3): 231-241. doi: 10.1016/0147-619X(88)90041-8

    Ghaedmohammadi S, Rigi G, Zadmard R, et al. Immobilization of bioactive protein A from Staphylococcus aureus (SpA) on the surface of Bacillus subtilis spores [J]. Molecular Biotechnology, 2015, 57(8): 756-766. doi: 10.1007/s12033-015-9868-z

    Ricca E, Baccigalupi L, Isticato R. Spore-adsorption: mechanism and applications of a non-recombinant display system [J]. Biotechnology Advances, 2021(47): 107693.

    Yu J, Setrerrahmane S, Xu H M. Selection and application of linker peptide in the design of fusion protein [J]. Pharmaceutical Biotechnology, 2016, 23(3): 260-263.

    Huston J S, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(16): 5879-5883.

    Arai R, Ueda H, Kitayama A, et al. Design of the linkers which effectively separate domains of a bifunctional fusion protein [J]. Protein Engineering, Design and Selection, 2001, 14(8): 529-532. doi: 10.1093/protein/14.8.529

    Huang Z, Li G, Zhang C, et al. A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library [J]. Enzyme and Microbial Technology, 2016(83): 1-6.

    Yuan G L, Zhu L, Kong X H. Research perspectives of oral vaccine delivery systems for fisheries: a review [J]. Fisheries Science, 2021, 40(4): 635-642.

    Mutoloki S, Munang’andu H M, Evensen Ø. Oral vaccination of fish–antigen preparations, uptake, and immune induction [J]. Frontiers in Immunology, 2015(6): 519.

    Liu S X, Wang Q, Fang Z Z, et al. Research advance on oral vaccine for aquatic animals [J]. Biotechnology Bulletin, 2018, 34(6): 30-37.

    Chen Y. Adjuvant effect of Bacillus subtilis spores and its effect on SVCV replication [D]. Changchun: Jilin Agricultural University, 2020: 3-7.

    Huang J M, La Ragione R M, Nunez A, et al. Immunostimulatory activity of Bacillus spores [J]. FEMS Immunology & Medical Microbiology, 2008, 53(2): 195-203.

    Islam M A, Firdous J, Badruddoza A Z M, et al. M cell targeting engineered biomaterials for effective vaccination [J]. Biomaterials, 2019(192): 75-94.

    Valdez A, Yepiz-Plascencia G, Ricca E, et al. First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC: Vp26 fusion protein displayed on Bacillus subtilis spores surface [J]. Journal of Applied Microbiology, 2014, 117(2): 347-357. doi: 10.1111/jam.12550

    Su Y L, Liu C, Deng Y Q, et al. Research on Streptococcus agalactiae disease in tilapia: a review [J]. Journal of Dalian Ocean University, 2019, 34(5): 757-766.

    Cheng S L, Liu X F, Zheng W, et al. Streptococcus agalactiae infection in fish [J]. Progress in Veterinary Medicine, 2016, 37(2): 105-109.

    Yao Y Y, Chen D D, Cui Z W, et al. Oral vaccination of tilapia against Streptococcus agalactiae using Bacillus subtilis spores expressing Sip [J]. Fish & Shellfish Immunology, 2019(86): 999-1008.

    Zhao Z T, Shi L, Wang W J, et al. Research progress on application of probiotics, prebiotics and synbiotics to prevent vibrosis in fish [J]. Feed Research, 2022, 45(16): 115-119.

    Mohamad N, Amal M N A, Yasin I S M, et al. Vibriosis in cultured marine fishes: a review [J]. Aquaculture, 2019(512): 734289.

    Wang Q, Yin J, Wang Y, et al. Prevention and Control of Grass Carp Hemorrhagic Disease [M]. Aquareovirus. Singapore: Springer, 2021: 183-196.

    Gao Y, Pei C, Zhang C, et al. A review of research and development of vaccine against grass carp reovirus [J]. Fisheries Science, 2017, 36(2): 237-242.

    Ren P L. Preliminary study on protective immunity of the outer capsid VP4 of grass carp reovirus [D]. Guangzhou: Sun Yat-sen University, 2016: 37-47.

    Jiang H, Bian Q, Zeng W, et al. Oral delivery of Bacillus subtilis spores expressing grass carp reovirus VP4 protein produces protection against grass carp reovirus infection [J]. Fish & Shellfish Immunology, 2019(84): 768-780.

    Chen D D, Yao Y Y, Cui Z W, et al. Comparative study of the immunoprotective effect of two grass carp-sourced Bacillus subtilis spore-based vaccines against grass carp reovirus [J]. Aquaculture, 2019(504): 88-95.

    Sun R, Zhang M, Chen H, et al. Germination-arrest Bacillus subtilis spores as an oral delivery vehicle of grass carp reovirus (GCRV) Vp7 antigen augment protective immunity in grass carp (Ctenopharyngodon idella) [J]. Genes, 2020, 11(11): 1351. doi: 10.3390/genes11111351

    Gao Y, Huo X, Wang Z, et al. Oral administration of Bacillus subtilis subunit vaccine significantly enhances the immune protection of grass carp against GCRV-Ⅱ infection [J]. Viruses, 2021, 14(1): 30. doi: 10.3390/v14010030

    Dong H X, Zeng W W. Research progress on largemouth bass ranavirus disease [J]. Chinese Journal of Virology, 2022, 38(3): 746-756.

    Tidona C A, Schnitzler P, Kehm R, et al. Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution [J]? Virus Genes, 1998, 16(1): 59-66. doi: 10.1023/A:1007949710031

    Krishnan R, Qadiri S S N, Kim J O, et al. Infection dynamics and shedding kinetics of nervous necrosis virus in juvenile seven band grouper using an intraperitoneal infection-cohabitation model [J]. Aquaculture, 2021(530): 735957.

    Zorriehzahra M J. Viral Nervous Necrosis Disease [M]. Emerging and Reemerging Viral Pathogens. Amsterdam: Academic Press, 2020: 673-703.

    Mai W, Huang F, Chen H, et al. Nervous necrosis virus capsid protein exploits nucleolar phosphoprotein Nucleophosmin (B23) function for viral replication [J]. Virus Research, 2017(230): 1-6.

    Mai W, Yan B, Xin J. Oral immunizations with Bacillus subtilis spores expressing MCP protein provide protection against red-spotted grouper nervous necrosis virus (RGNNV) infection in juvenile grouper, Epinephelus coioides [J]. Aquaculture, 2022(552): 738008.

    Desrina, Prayitno S B, Verdegem M C J, et al. White spot syndrome virus host range and impact on transmission [J]. Reviews in Aquaculture, 2022, 14(4): 1843-1860. doi: 10.1111/raq.12676

    Verbruggen B, Bickley L K, van Aerle R, et al. Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments [J]. Viruses, 2016, 8(1): 23. doi: 10.3390/v8010023

    Ning D, Leng X, Li Q, et al. Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration [J]. Journal of Applied Microbiology, 2011, 111(6): 1327-1336. doi: 10.1111/j.1365-2672.2011.05156.x

    Nguyen A T V, Pham C K, Pham H T T, et al. Bacillus subtilis spores expressing the VP28 antigen: a potential oral treatment to protect Litopenaeus vannamei against white spot syndrome [J]. FEMS Microbiology Letters, 2014, 358(2): 202-208. doi: 10.1111/1574-6968.12546

    Pham K-C, Tran H T T, Van Doan C, et al. Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen [J]. Letters in Applied Microbiology, 2017, 64(3): 184-191. doi: 10.1111/lam.12708

    Lun Z R, Gasser R B, Lai D H, et al. Clonorchiasis: a key foodborne zoonosis in China [J]. The Lancet Infectious Diseases, 2005, 5(1): 31-41. doi: 10.1016/S1473-3099(04)01252-6

    Hong S T, Fang Y. Clonorchis sinensis and clonorchiasis, an update [J]. Parasitology International, 2012, 61(1): 17-24. doi: 10.1016/j.parint.2011.06.007

    Yao J K. Construction of the life history of Clonorchis sinensis and study on the killing effect of Lpraziquantel on Clonorchis sinensis [D]. Wuxi: Jiangsu Institute of Parasitic Diseases, 2020: 4-28.

    Ahammed Shareef P A, Abidi S M A. Cysteine protease is a major component in the excretory/secretory products of Euclinostomum heterostomum (Digenea: Clinostomidae) [J]. Parasitology Research, 2014, 113(1): 65-71. doi: 10.1007/s00436-013-3627-5

    Tang Z, Sun H, Chen T, et al. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function [J]. Fish & Shellfish Immunology, 2017(64): 287-296.

    Wang X, Chen W, Tian Y, et al. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate [J]. Vaccine, 2014, 32(12): 1338-1345. doi: 10.1016/j.vaccine.2014.01.039

    Jiang H, Chen T, Sun H, et al. Immune response induced by oral delivery of Bacillus subtilis spores expressing enolase of Clonorchis sinensis in grass carps (Ctenopharyngodon idellus) [J]. Fish & Shellfish Immunology, 2017(60): 318-325.

    Wang X, Chen W, Lv X, et al. Identification and characterization of paramyosin from cyst wall of metacercariae implicated protective efficacy against Clonorchis sinensis infection [J]. PLoS One, 2012, 7(3): e33703. doi: 10.1371/journal.pone.0033703

    Jiz M A, Wu H, Olveda R, et al. Development of paramyosin as a vaccine candidate for schistosomiasis [J]. Frontiers in Immunology, 2015(6): 347.

    Wu L Q, Li S M, Wei Z D, et al. Epidemiological survey of bacterial diseases of aquaculture animals in Wuxuan County from 2014 to 2018 [J]. Guangxi Journal of Animal Husbandry & Veterinary Medicine, 2020, 36(6): 248-251.

    Gui L, Zhang Q Y. A brief review of aquatic animal virology researches in China [J]. Journal of Fisheries of China, 2019, 43(1): 168-187.

    Zhang H Y. Investigation on fish parastic deseases in Yan Jin region [J]. Henan Fisheries, 2018(2): 2-5.

    Chen H, Ullah J, Jia J. Progress in Bacillus subtilis spore surface display technology towards environment, vaccine development, and biocatalysis [J]. Microbial Physiology, 2017, 27(3): 159-167. doi: 10.1159/000475177

    Jiang S Q, Li T, Zhang Y N, et al. Progress on genetic engineered vaccines for fish diseases [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 160-170.

(2)

(1)

计量
  • 文章访问数:  109
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-08-16
修回日期:  2023-11-02
刊出日期:  2024-04-15

目录