• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-3207

主管 中国科学院

主办 中国科学院水生生物研究所、中国海洋湖沼学会

寄生虫抗药性及其对水产动物寄生虫病药物防治的启示

上一篇

下一篇

2024. 寄生虫抗药性及其对水产动物寄生虫病药物防治的启示. 水生生物学报, 48(2): 351-360. doi: 10.7541/2023.2023.0140
引用本文: 2024. 寄生虫抗药性及其对水产动物寄生虫病药物防治的启示. 水生生物学报, 48(2): 351-360. doi: 10.7541/2023.2023.0140
Wen-Xiang LI, Hao WANG, Bing-Wen XI, Ming LI, Pin NIE, Gui-Tang WANG. 2024. PARASITE DRUG RESISTANCE AND ITS ENLIGHTENMENT FOR ANTHELMINTIC THERAPY OF PARASITIC DISEASES IN AQUACULTURE. ACTA HYDROBIOLOGICA SINICA, 48(2): 351-360. doi: 10.7541/2023.2023.0140
Citation: Wen-Xiang LI, Hao WANG, Bing-Wen XI, Ming LI, Pin NIE, Gui-Tang WANG. 2024. PARASITE DRUG RESISTANCE AND ITS ENLIGHTENMENT FOR ANTHELMINTIC THERAPY OF PARASITIC DISEASES IN AQUACULTURE. ACTA HYDROBIOLOGICA SINICA, 48(2): 351-360. doi: 10.7541/2023.2023.0140

寄生虫抗药性及其对水产动物寄生虫病药物防治的启示

  • 基金项目:

    国家自然科学基金重点(32230109); 国家大宗淡水鱼产业技术体系 (CARS-45)资助

详细信息
    作者简介:

    李文祥, 研究员, 博士生导师; 主要从事鱼类寄生虫学和寄生虫病研究。E-mail: liwx@ihb.ac.cn

    通讯作者: 王桂堂, E-mail: gtwang@ihb.ac.cn
  • 中图分类号: S941.5

PARASITE DRUG RESISTANCE AND ITS ENLIGHTENMENT FOR ANTHELMINTIC THERAPY OF PARASITIC DISEASES IN AQUACULTURE

  • Fund Project: 国家自然科学基金重点(32230109); 国家大宗淡水鱼产业技术体系 (CARS-45)资助
More Information
  • 抗药性是病原体在药物作用下发生生理变化和遗传变异而获得的能经受住药物毒性的一种能力。随着水产养殖集约化程度提高和药物长期大量使用, 寄生虫抗药性越来越普遍和严重, 不仅影响寄生虫病的防治效果, 还带来环境污染和食品安全问题。文章通过对陆生动物抗寄生虫药物、寄生虫抗药性机制、抗药性主要测定方法、抗药性控制策略及水产动物寄生虫抗药性的研究现状进行综述, 为我国水产养殖中寄生虫抗药性研究提供思路, 同时为减缓寄生虫抗药性提供科学的防控策略。
  • 加载中
  • 图 1  寄生虫常见的抗药性机制(修改自Garcia-Salcedo等[44])

    Figure 1.  Common mechanisms for drug resistance of parasites (Modified from Garcia-Salcedo, et al.[44])

  • Van Boeckel T P, Pires J, Silvester R, et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries [J]. Science, 2019, 365(6459): eaaw1944. doi: 10.1126/science.aaw1944

    Preena P G, Swaminathan T R, Kumar V J R, et al. Antimicrobial resistance in aquaculture: a crisis for concern [J]. Biologia, 2020, 75(9): 1497-1517. doi: 10.2478/s11756-020-00456-4

    Schar D, Zhao C, Wang Y, et al. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia [J]. Nature Communications, 2021(12): 5384.

    Zhang Z, Zhang Q, Wang T, et al. Assessment of global health risk of antibiotic resistance genes [J]. Nature Communications, 2022(13): 1553.

    Brunton L A, Desbois A P, Garza M, et al. Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: Application of a systems-thinking approach to aquaculture systems [J]. Science of the Total Environment, 2019(687): 1344-1356.

    Kolář M, Urbánek K, Látal T. Antibiotic selective pressure and development of bacterial resistance [J]. International Journal of Antimicrobial Agents, 2001, 17(5): 357-363. doi: 10.1016/S0924-8579(01)00317-X

    Roush R T, Mckenzie J A. Ecological genetics of insecticide and acaricide resistance [J]. Annual Review of Entomology, 1987(32): 361-380.

    Mougabure-Cueto G, Picollo M I. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management [J]. Acta Tropica, 2015(149): 70-85.

    Baiak B H B, Lehnen C R, da Rocha R A. Anthelmintic resistance in cattle: a systematic review and meta-analysis [J]. Livestock Science, 2018(217): 127-135.

    REX-Consortium. Heterogeneity of selection and the evolution of resistance [J]. Trends in Ecology & Evolution, 2013, 28(2): 110-118.

    Fairweather I, Brennan G P, Hanna R E B, et al. Drug resistance in liver flukes [J]. International Journal for Parasitology:Drugs and Drug Resistance, 2020(12): 39-59.

    James C E, Hudson A L, Davey M W. Drug resistance mechanisms in helminths: is it survival of the fittest [J]? Trends in Parasitology, 2009, 25(7): 328-335. doi: 10.1016/j.pt.2009.04.004

    Ouellette M, Ward S A. Drug Resistance in Parasites [M]. Molecular Medical Parasitology. Amsterdam: Elsevier, 2003: 397-432.

    Sibley C H, Hunt S Y. Drug resistance in parasites: can we stay ahead of the evolutionary curve [J]? Trends in Parasitology, 2003, 19(11): 532-537. doi: 10.1016/j.pt.2003.09.009

    Chapman H D, Rathinam T. Focused review: The role of drug combinations for the control of coccidiosis in commercially reared chickens [J]. International Journal for Parasitology:Drugs and Drug Resistance, 2022(18): 32-42.

    McEwan G F, Groner M L, Burnett D L, et al. Managing aquatic parasites for reduced drug resistance: lessons from the land [J]. Journal of the Royal Society Interface, 2016(13): 20160830.

    Waller P J, Buchmann K. Anthelmintic resistance and parasite control in commercial eel farms: consequences for producers [J]. Veterinary Record, 2001, 148(25): 783-784. doi: 10.1136/vr.148.25.783

    Aaen S M, Helgesen K O, Bakke M J, et al. Drug resistance in sea lice: a threat to salmonid aquaculture [J]. Trends in Parasitology, 2015, 31(2): 72-81. doi: 10.1016/j.pt.2014.12.006

    Robbins C, Gettinby G, Lees F, et al. Assessing topical treatment interventions on Scottish salmon farms using a sea lice (Lepeophtheirus salmonis) population model [J]. Aquaculture, 2010(306): 191-197.

    Saksida S M, Morrison D, Revie C W. The efficacy of emamectin benzoate against infestations of sea lice, Lepeophtheirus salmonis, on farmed Atlantic salmon, Salmo salar L., in British Columbia [J]. Journal of Fish Diseases, 2010, 33(11): 913-917. doi: 10.1111/j.1365-2761.2010.01192.x

    Matsumura F. Toxicology of Insecticides [M]. 2nd Edition ed. 2012, New York: Plenum.

    Kumar S V, Fareedullah M, Sudhakar Y, et al. Current review on organophosphorus poisoning [J]. Archives of Applied Science Research, 2010(2): 199-215.

    de Araújo P A, Maciel-Honda P O, de Oliveira Costa-Fernandes T, et al. Efficacy of chlorine, sodium chloride and trichlorfon baths against monogenean Dawestrema cycloancistrium parasite of pirarucu Arapaima gigas [J]. Journal of Fish Diseases, 2023, 46(2): 113-126. doi: 10.1111/jfd.13725

    Soderlund D M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances [J]. Archives of Toxicology, 2012, 86(2): 165-181. doi: 10.1007/s00204-011-0726-x

    González M P, Marín S L, Vargas-Chacoff L. Effects of Caligus rogercresseyi (Boxshall and Bravo, 2000) infestation on physiological response of host Salmo salar (Linnaeus 1758): Establishing physiological thresholds [J]. Aquaculture, 2015(438): 47-54.

    Evans K S, Wit J, Stevens L, et al. Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses [J]. PLoS Pathogens, 2021, 17(3): e1009297. doi: 10.1371/journal.ppat.1009297

    Dermauw W, Ilias A, Riga M, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance [J]. Insect Biochemistry and Molecular Biology, 2012, 42(7): 455-465. doi: 10.1016/j.ibmb.2012.03.002

    El-Saber Batiha G, Alqahtani A, Ilesanmi O B, et al. Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects [J]. Pharmaceuticals, 2020, 13(8): 196. doi: 10.3390/ph13080196

    Poley J D, Braden L M, Messmer A M, et al. High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes [J]. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8(2): 174-188. doi: 10.1016/j.ijpddr.2018.02.007

    Van Leeuwen T, Demaeght P, Osborne E J, et al. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4407-4412.

    Wang X, Anadón A, Wu Q, et al. Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism [J]. Annual Review of Pharmacology and Toxicology, 2018(58): 471-507.

    Martin R J, Robertson A P, Buxton S K, et al. Levamisole receptors: a second awakening [J]. Trends in Parasitology, 2012, 28(7): 289-296. doi: 10.1016/j.pt.2012.04.003

    Carter D M, Specker E, Małecki P H, et al. Enhanced properties of a benzimidazole benzylpyrazole lysine demethylase inhibitor: Mechanism-of-action, binding site analysis, and activity in cellular models of prostate cancer [J]. Journal of Medicinal Chemistry, 2021, 64(19): 14266-14282. doi: 10.1021/acs.jmedchem.1c00693

    Lacey E. Mode of action of benzimidazoles [J]. Parasitology Today, 1990, 6(4): 112-115. doi: 10.1016/0169-4758(90)90227-U

    Gupta G, Chatterjee A, Kumar M, et al. Efficacy of single and multiple doses of fenbendazole against gill parasites (Dactylogyrus sp.) of Labeo rohita (Hamilton, 1822) and its physio-metabolic effects on the fish [J]. Aquaculture Research, 2020, 51(3): 1190-1199. doi: 10.1111/are.14470

    Andrews P, Thomas H, Pohlke R, et al. Praziquantel [J]. Medicinal Research Reviews, 1983, 3(2): 147-200. doi: 10.1002/med.2610030204

    Becker B, Mehlhorn H, Andrews P, et al. Light and electron microscopic studies on the effect of praziquantel on Schistosoma mansoni, Dicrocoelium dendriticum, and Fasciola hepatica (Trematoda) in vitro [J]. Zeitschrift Für Parasitenkunde, 1980, 63(2): 113-128.

    Thomas C M, Timson D J. The mechanism of action of praziquantel: Six hypotheses [J]. Current Topics in Medicinal Chemistry, 2018, 18(18): 1575-1584. doi: 10.2174/1568026618666181029143214

    Thomas C M, Timson D J. The mechanism of action of praziquantel: can new drugs exploit similar mechanisms [J]? Current Medicinal Chemistry, 2020, 27(5): 676-696. doi: 10.2174/0929867325666180926145537

    Norbury L J, Shirakashi S, Power C, et al. Praziquantel use in aquaculture - Current status and emerging issues [J]. International Journal for Parasitology:Drugs and Drug Resistance, 2022(18): 87-102.

    Bader C, Starling D E, Jones D E, et al. Use of praziquantel to control platyhelminth parasites of fish [J]. Journal of Veterinary Pharmacology and Therapeutics, 2019, 42(2): 139-153.

    Brattsten L B, Holyoke C W Jr, Leeper J R, et al. Insecticide resistance: challenge to pest management and basic research [J]. Science, 1986, 231(4743): 1255-1260. doi: 10.1126/science.231.4743.1255

    Ouellette M. Biochemical and molecular mechanisms of drug resistance in parasites [J]. Tropical Medicine & International Health, 2001, 6(11): 874-882.

    Garcia-Salcedo J A, Unciti-Broceta J D, Valverde-Pozo J, et al. New approaches to overcome transport related drug resistance in trypanosomatid parasites [J]. Frontiers in Pharmacology, 2016(7): 351.

    Dang K, Doggett S L, Veera Singham G, et al. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae) [J]. Parasites & Vectors, 2017, 10(1): 318.

    Lilly D G, Latham S L, Webb C E, et al. Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) [J]. PLoS One, 2016, 11(4): e0153302. doi: 10.1371/journal.pone.0153302

    Lespine A, Ménez C, Bourguinat C, et al. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance [J]. International Journal for Parasitology:Drugs and Drug Resistance, 2012(2): 58-75.

    Choudhary S, Kashyap S S, Martin R J, et al. Advances in our understanding of nematode ion channels as potential anthelmintic targets [J]. International Journal for Parasitology:Drugs and Drug Resistance, 2022(18): 52-86.

    Fukuto T R. Mechanism of action of organophosphorus and carbamate insecticides [J]. Environmental Health Perspectives, 1990(87): 245-254.

    Lubega G W, Prichard R K. Specific interaction of benzimidazole anthelmintics with tubulin: high-affinity binding and benzimidazole resistance in Haemonchus contortus [J]. Molecular and Biochemical Parasitology, 1990, 38(2): 221-232. doi: 10.1016/0166-6851(90)90025-H

    Mutunga J M, Anderson T D, Craft D T, et al. Carbamate and pyrethroid resistance in the Akron strain of Anopheles gambiae [J]. Pesticide Biochemistry and Physiology, 2015(121): 116-121. doi: 10.1016/j.pestbp.2015.03.001

    Catalano A, Iacopetta D, Ceramella J, et al. Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies [J]. Molecules, 2022, 27(3): 616. doi: 10.3390/molecules27030616

    Capela R, Moreira R, Lopes F. An overview of drug resistance in protozoal diseases [J]. International Journal of Molecular Sciences, 2019, 20(22): 5748. doi: 10.3390/ijms20225748

    Foote S J, Kyle D E, Martin R K, et al. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum [J]. Nature, 1990, 345(6272): 255-258. doi: 10.1038/345255a0

    Fidock D A, Nomura T, Talley A K, et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance [J]. Molecular Cell, 2000, 6(4): 861-871. doi: 10.1016/S1097-2765(05)00077-8

    Foote S J, Galatis D, Cowman A F. Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(8): 3014-3017.

    Birnbaum J, Scharf S, Schmidt S, et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites [J]. Science, 2020, 367(6473): 51-59. doi: 10.1126/science.aax4735

    Thabet A, Honscha W, Daugschies A, et al. Quantitative proteomic studies in resistance mechanisms of Eimeria tenella against polyether ionophores [J]. Parasitology Research, 2017, 116(5): 1553-1559. doi: 10.1007/s00436-017-5432-z

    Claerebout E, De Wilde N, Van Mael E, et al. Anthelmintic resistance and common worm control practices in sheep farms in Flanders, Belgium [J]. Veterinary Parasitology:Regional Studies and Reports, 2020(20): 100393.

    Coles G C, Jackson F, Pomroy W E, et al. The detection of anthelmintic resistance in nematodes of veterinary importance [J]. Veterinary Parasitology, 2006, 136(3/4): 167-185.

    Cwiklinski K, Merga J Y, Lake S L, et al. Transcriptome analysis of a parasitic clade V nematode: comparative analysis of potential molecular anthelmintic targets in Cylicostephanus goldi [J]. International Journal for Parasitology, 2013, 43(11): 917-927. doi: 10.1016/j.ijpara.2013.06.010

    Bourguinat C, Keller K, Blagburn B, et al. Correlation between loss of efficacy of macrocyclic lactone heartworm anthelmintics and P-glycoprotein genotype [J]. Veterinary Parasitology, 2011, 176(4): 374-381. doi: 10.1016/j.vetpar.2011.01.024

    Dayan A D. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics [J]. Acta Tropica, 2003, 86(2/3): 141-159.

    Kelley J M, Elliott T P, Beddoe T, et al. Current threat of triclabendazole resistance in Fasciola hepatica [J]. Trends in Parasitology, 2016, 32(6): 458-469. doi: 10.1016/j.pt.2016.03.002

    Doenhoff M J, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis [J]. Current Opinion in Infectious Diseases, 2008, 21(6): 659-667. doi: 10.1097/QCO.0b013e328318978f

    Jeziorski M C, Greenberg R M. Voltage-gated calcium channel subunits from platyhelminths: Potential role in praziquantel action [J]. International Journal for Parasitology, 2006, 36(6): 625-632. doi: 10.1016/j.ijpara.2006.02.002

    Jesudoss Chelladurai J, Kifleyohannes T, Scott J, et al. Praziquantel resistance in the zoonotic cestode Dipylidium caninum [J]. The American Journal of Tropical Medicine and Hygiene, 2018, 99(5): 1201-1205. doi: 10.4269/ajtmh.18-0533

    Heumann J, Carmichael S, Bron J E, et al. Molecular cloning and characterisation of a novel P-glycoprotein in the salmon louse Lepeophtheirus salmonis [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2012, 155(2): 198-205.

    Igboeli O O, Fast M D, Heumann J, et al. Role of P-glycoprotein in emamectin benzoate (SLICE®) resistance in sea lice, Lepeophtheirus salmonis [J]. Aquaculture, 2012(344/345/346/347/348/349): 40-47.

    Carmichael S N, Bron J E, Taggart J B, et al. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression [J]. BMC Genomics, 2013, 14(1): 1-16. doi: 10.1186/1471-2164-14-1

    Kaur K, Helgesen K O, Bakke M J, et al. Mechanism behind resistance against the organophosphate azamethiphos in salmon lice (Lepeophtheirus salmonis) [J]. PLoS One, 2015, 10(4): e0124220. doi: 10.1371/journal.pone.0124220

    Sevatdal S, Fallang A, Ingebrigtsen K, et al. Monooxygenase mediated pyrethroid detoxification in sea lice (Lepeophtheirus salmonis) [J]. Pest Management Science, 2005, 61(8): 772-778. doi: 10.1002/ps.1057

    Hodgkinson J E, Kaplan R M, Kenyon F, et al. Refugia and anthelmintic resistance: concepts and challenges [J]. International Journal for Parasitology:Drugs and Drug Resistance, 2019(10): 51-57.

    Borgsteede F H M, Duyn S P J. Lack of reversion of a benzimidazole resistant strain of Haemonchus contortus after six years of levamisole usage [J]. Research in Veterinary Science, 1989, 47(2): 270-272. doi: 10.1016/S0034-5288(18)31218-9

    Borgsteede F H M, Moll L, Vellema P, et al. Lack of reversion in triclabendazole-resistant Fasciola hepatica [J]. Veterinary Record, 2005, 156(11): 350-351. doi: 10.1136/vr.156.11.350

    Bravo S, Sevatdal S, Horsberg T E. Sensitivity assessment in the progeny of Caligus rogercresseyi to emamectin benzoate [J]. Bulletin of the European Association of Fish Pathologists, 2010, 30(3): 99-105.

    Allen R C, Engelstädter J, Bonhoeffer S, et al. Reversing resistance: different routes and common themes across pathogens [J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1863): 20171619. doi: 10.1098/rspb.2017.1619

    Amaral Rocha É A, Silva R M, Rodrigues da Silva B K, et al. Fitness cost and reversion of resistance Leucoptera coffeella (Lepidoptera: Lyonetiidae) to chlorpyrifos [J]. Ecotoxicology and Environmental Safety, 2022(242): 113831.

    Bakke T A, Cable J, Harris P D. The biology of gyrodactylid monogeneans: the “Russian-doll killers” [J]. Advances in Parasitology, 2007(64): 161-460.

    Buchmann K, Roepstorff A, Waller P J. Experimental selection of mebendazole-resistant gill monogeneans from the European eel, Anguilla anguilla L [J]. Journal of Fish Diseases, 1992, 15(5): 393-408. doi: 10.1111/j.1365-2761.1992.tb01238.x

    Jiang L F, Zhu W. Drug resistance and control countermeasures of Pseudactylogyrus anguillicaudatus [J]. Current Fisheries, 2007, 32(2): 36-37.

    Kliot A, Ghanim M. Fitness costs associated with insecticide resistance [J]. Pest Management Science, 2012, 68(11): 1431-1437. doi: 10.1002/ps.3395

    Coustau C, Chevillon C, ffrench-Constant R. Resistance to xenobiotics and parasites: can we count the cost [J]? Trends in Ecology & Evolution, 2000, 15(9): 378-383.

    Babiker H A, Hastings I M, Swedberg G. Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies [J]. Expert Review of Anti-Infective Therapy, 2009, 7(5): 581-593. doi: 10.1586/eri.09.29

    Gimode W R, Kiboi D M, Kimani F T, et al. Fitness cost of resistance for lumefantrine and piperaquine-resistant Plasmodium berghei in a mouse model [J]. Malaria Journal, 2015(14): 38.

    Espedal P G, Glover K A, Horsberg T E, et al. Emamectin benzoate resistance and fitness in laboratory reared salmon lice (Lepeophtheirus salmonis) [J]. Aquaculture, 2013(416/417): 111-118.

    Sevatdal S, Horsberg T E. Determination of reduced sensitivity in sea lice (Lepeophtheirus salmonis Krøyer) against the pyrethroid deltamethrin using bioassays and probit modelling [J]. Aquaculture, 2003, 218(1/2/3/4): 21-31.

    Helgesen K O, Horsberg T E. Single-dose field bioassay for sensitivity testing in sea lice, Lepeophtheirus salmonis: development of a rapid diagnostic tool [J]. Journal of Fish Diseases, 2013, 36(3): 261-272. doi: 10.1111/jfd.12053

    Ahmadian E, Samiei M, Hasanzadeh A, et al. Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: past, present and future [J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186: 113265.

    Picón-Camacho S M, Marcos-Lopez M, Bron J E, et al. An assessment of the use of drug and non-drug interventions in the treatment of Ichthyophthirius multifiliis Fouquet, 1876, a protozoan parasite of freshwater fish [J]. Parasitology, 2012, 139(2): 149-190.

    FHF. Tapeworm (Eubothrium sp.) in salmon (Salmo salar): trial of new therapeutics and development of an in vitro bioassay to measure praziquantel resistance. 2006, The Norwegian Fishery and Aquaculture Industry Research Fund. p. https://www.fhf.no/prosjekter/prosjektbasen/551024/.

    FHF, Resistance in tapeworm (Eubothrium sp.). 2008, The Norwegian Fishery and Aquaculture Industry Research Fund. p. https://www.fhf.no/prosjekter/prosjektbasen/552024/.

    Buchmann K, Bjerregaard J. Comparative efficacies of commercially available benzimidazoles against Pseudodactylogyrus infestations in eels [J]. Diseases of Aquatic Organisms, 1990(9): 117-120.

    Buchmann K, Bjerregaard J. Mebendazole treatment of pseudodactylogyrosis in an intensive eel-culture system [J]. Aquaculture, 1990, 86(2/3): 139-153.

    Székely C, Molnár K. Mebendazole is an efficacious drug against pseudodactylogyrosis in the European eel (Anguilla anguilla) [J]. Journal of Applied Ichthyology, 1987, 3(4): 183-186. doi: 10.1111/j.1439-0426.1987.tb00539.x

    Helgesen K O, Horsberg T E, Stige L C, et al. The surveillance programme for resistance in salmon lice (Lepeophtheirus salmonis) in Norway. 2021, Norwegian Veterinary Institute.

    Saksida S M, Morrison D, McKenzie P, et al. Use of Atlantic salmon, Salmo salar L., farm treatment data and bioassays to assess for resistance of sea lice, Lepeophtheirus salmonis, to emamectin benzoate (SLICE®) in British Columbia, Canada [J]. Journal of Fish Diseases, 2013, 36(5): 515-520. doi: 10.1111/jfd.12018

    Helgesen K O, Bravo S, Sevatdal S, et al. Deltamethrin resistance in the sea louse Caligus rogercresseyi (Boxhall and Bravo) in Chile: bioassay results and usage data for antiparasitic agents with references to Norwegian conditions [J]. Journal of Fish Diseases, 2014, 37(10): 877-890. doi: 10.1111/jfd.12223

    Wang J, Paz C, Padalino G, et al. Large-scale RNAi screening uncovers therapeutic targets in the parasite Schistosoma mansoni [J]. Science, 2020, 369(6511): 1649-1653. doi: 10.1126/science.abb7699

    Buyon L E, Elsworth B, Duraisingh M T. The molecular basis of antimalarial drug resistance in Plasmodium vivax [J]. International Journal for Parasitology:Drugs and Drug Resistance, 2021(16): 23-37.

(1)

计量
  • 文章访问数:  745
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2023-05-06
修回日期:  2023-07-07
刊出日期:  2024-02-15

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发