THE CLONE OF FOXO1 GENE AND ITS SPATIOTEMPORAL EXPRESSION IN GONADAL COMPLEX OF NEWLY HATCHED ALLIGATOR SINENSIS
-
摘要: 研究以初孵扬子鳄(Alligator sinensis)性腺组织为实验材料, 开展Forkhead box家族蛋白-1(FoxO1)基因CDS区克隆和序列特征分析。利用免疫组织化学检测其在胃、肠和肺脏等组织中的表达谱, 结合免疫荧光(IF)、RT-PCR和Western Blot探讨其在不同出壳后日龄(17日龄、63日龄和96日龄)雌性扬子鳄性腺组织中的时空表达规律, 探讨其在雌性扬子鳄性腺发育过程中的生物学功能。研究成功克隆获得FoxO1基因长度为1941 bp的完整编码区及646个预测编码氨基酸序列。与其他物种间进行同源性比对和构建进化树分析发现, 扬子鳄FoxO1基因与鸟类的亲缘关系相较中华鳖(Pelodiscus sinensis)和原矛头蝮(Protobothrops mucrosquamatus)等爬行动物更近。在其他脊椎动物中, 哺乳动物、硬骨鱼和两栖物种也各自聚类称为子群, 表明FoxO1兼具功能保守性和种间特异性; 免疫组织化学结果表明FoxO1在初孵鳄性腺复合体、肺、胃和肠中均有表达, 免疫荧光结果表明17日龄性腺组织中的FoxO1主要表达于肾上腺和中肾区但在皮质部呈微弱表达, 在63日龄性腺皮质部表达逐渐上调且呈无规则随机分布, 在96日龄性腺皮质部中卵母细胞发育程度更高的位置呈强表达; RT-PCR结果表明不同时期扬子鳄性腺组织FoxO1基因mRNA表达量差异不显著, Western Blot结果显示性腺组织中的FoxO1表达量呈先上升后下降的变化模式, 表现为63日龄FoxO1基因表达量显著高于17日龄和96日龄, 相关结果对于丰富扬子鳄卵子发生调控机制提供了重要的研究参考。Abstract: The molecular cloning and sequence characteristic analysis of Forkhead Box protein-1 (FoxO1) CDS region were investigated using the gonad tissues of Alligator sinensis in the resent research. Immunohistochemistry was used to detect its expression patterns in in peripheral tissues such as stomach, intestine, and lung. Immunofluorescence (IF), RT-PCR and Western blot were used to investigate the temporal and spatial expression patterns in the gonadal tissues of Chinese Alligator at different days of age (17, 63 and 96 days of age), and to investigate the biological functions in the gonadal development of Chinese alligator. The complete coding region of FoxO1 gene and predicted coding amino acid were 1941 bp and 646 aa, respectively. Homology comparison and phylogenetic tree analysis showed that FoxO1 of Chinese alligator was more closely to birds than reptiles such as Pelodiscus sinesis and Protobothrips mucrisquamatus. Other vertebrates such as mammals, teleost, and amphibians were also grouped into subgroups, suggesting that FoxO1 is both functionally conserved and species-specific. FoxO1 protein expressed in the newly hatched crocodile gonadal complex, lung, stomach and intestine. FoxO1 expressed significantly higher in the ovarian tissue at the 17th days post-hatched than that at the 63rd and 96th days post-hatched individuals. FoxO1 mainly expressed in the adrenal and mesonephrons but weakly expressed in the cortex of ovarian collected at the 17th days post-hatched, and its irregular and randomly distribution was gradually upregulated in the cortex at the 63rd days post-hatched individual. FoxO1strongly expressed in the cortex of the 96th days post-hatched individual ovarian tissues where oocytes were more developed. FoxO1 mRNA level was no significant difference in the gonadal tissues of Chinese alligator at different periods. These results provide important reference for enriching the regulation mechanism of oogenesis of Chinese Alligator.
-
Key words:
- Gonadal complex /
- Oogenesis /
- FoxO1 /
- Tissue expression profile /
- Spatio-temporal expression /
- Alligator sinensis
-
表 1 引物序列信息
Table 1. Information of primers sequences
引物Primer 引物序列Sequence (5′—3′) 产物大小Product size (bp) CDS-1F CAATGGAACTCAATCCGTCA 427 CDS-1R GATGGAGGGTATGACATAGGG CDS-2F TCAGGCCAGGAAGGAAATGG 588 CDS-2R TGTGGGTAGGAGAATCAGAAGTCAGT CDS-3F ACAAGCACCAGGTTATTCATTT 539 CDS-3R GCATAAGGGTTCATAGTATTCATC CDS-4F TCCTCAGCCCAGTGGTAGAGTATTG 520 CDS-4R AGCCTGACACCCAACTATGTGTGGT -
Wang L D, Wu X B. Research on major problems in conservation of Chinese Alligator sinensis and management strategies [J]. Journal of Fuyang Teachers College (
Natural Science ) , 2010, 27(3): 58-61. Wang H. The mating system and its influence on the genetic diversity of the Chinese Alligator sinensis [D]. Wuhu: Anhui Normal University, 2018: 31-46.
Wu M J. Study on seasonal changes of the structure of oviduct and sperm storage mechanism in female Chinese Alligator [D]. Wuhu: Anhui Normal University, 2019: 45-48.
Johnson J, Canning J, Kaneko T, et al. Germline stem cells and follicular renewal in the postnatal mammalian ovary [J]. Nature, 2004, 428(6979): 145-150. doi: 10.1038/nature02316
Weigel D, Jürgens G, Küttner F, et al. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo [J]. Cell, 1989, 57(4): 645-658. doi: 10.1016/0092-8674(89)90133-5
Zhang Y F. FOXO1 expression in endometrioid carcinoma and the influence and mechanisum of FOXO1 on the biological behaviorr of endometrial cancer cells. [D]. Jinan: Shandong University, 2017: 52-54
Wijchers P J E C, Burbach J P H, Smidt M P. In control of biology: of mice, men and Foxes [J]. The Biochemical Journal, 2006, 397(2): 233-246. doi: 10.1042/BJ20060387
Huang H, Tindall D J. Dynamic FoxO transcription factors [J]. Journal of Cell Science, 2007, 120(Pt 15): 2479-2487.
Barthel A, Schmoll D, Unterman T G. FoxO proteins in insulin action and metabolism [J]. Trends in Endocrinology & Metabolism, 2005, 16(4): 183-189.
Accili D, Arden K C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J]. Cell, 2004, 117(4): 421-426. doi: 10.1016/S0092-8674(04)00452-0
Teng Y. FOXO1Is regulated by fsh in the mouse preovulatory follicular atresia process [D]. Nanjing: Nanjing Agricultural University, 2013: 71-73.
Richards J S, Sharma S C, A E Falender, et al. Expression of FKHR, FKHRL1, and AFX genes in the rodent ovary: evidence for regulation by IGF-I, estrogen, and the gonadotropins [J]. Molecular Endocrinology, 2002, 16(3): 580-599. doi: 10.1210/mend.16.3.0806
Nakae J, Biggs W H, Kitamura T, et al. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1 [J]. Nature Genetics, 2002, 32(2): 245-253. doi: 10.1038/ng890
Birkenkamp K U, Coffer P J. FOXO transcription factors as regulators of immune homeostasis: molecules to die for [J]? The Journal of Immunology, 2003, 171(4): 1623-1629. doi: 10.4049/jimmunol.171.4.1623
Shen M. FOXO1-dependent regulation of apoptosis in mouse ovarian granulosa cells [D]. Nanjing: Nanjing Agricultural University, 2014: 39-66.
Pang W, Sun S, Bai L, et al. Molecular cloning and expression of forkhead transcription factor O1 gene from pig Sus scrofa [J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(4): 499-509. doi: 10.5713/ajas.2008.70433
Yang Y J. cDNA cloning and tissue expression of Foxo1 in pig [D]. Yangling: Northwest A & F University, 2007: 23-39.
Kamei Y, Miura S, Suzuki M, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control [J]. The Journal of Biological Chemistry, 2004, 279(39): 41114-41123. doi: 10.1074/jbc.M400674200
Allen D L, Unterman T G. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors [J]. American Journal of Physiology Cell Physiology, 2007, 292(1): C188-C199. doi: 10.1152/ajpcell.00542.2005
Kamagate A, Qu S, Perdomo G, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice [J]. The Journal of Clinical Investigation, 2008, 118(6): 2347-2364.
Brenkman A B, Burgering B M T. FoxO3a eggs on fertility and aging [J]. Trends in Molecular Medicine, 2003, 9(11): 464-467. doi: 10.1016/j.molmed.2003.09.003
Han Q, Dang W Q, Guo X Y, et al. Study on the expression pattern of FoxO1 in sheep ovarian follicles [J]. Chinese Journal of Animal Science, 2020, 56(3): 70-75.
Wang L, Li J, Fu C Y, et al. cDNA cloning of cattle FoxO1 gene and expression analysis in newborn calf tissues [J]. Chinese Journal of Animal Science, 2010, 46(13): 1-5.
Chen X L, Huang Z Q, Mao X B, et al. Research progress on the function of FoxO1 [J]. China Animal Husbandry and Veterinary Medicine, 2011, 38(9): 90-93.
Biggs Ⅲ W H, CaveneeKaren C W K. Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse [J]. Mammalian Genome, 2001, 12(6): 416-425. doi: 10.1007/s003350020002
Meng C H. Investigation on the biological characters of ovarian cells of Xiang pig and factors affect maturation of porcine granulosa cells in vitro [D]. Nanjing: Nanjing Agricultural University, 2008: 39-55.
Tarnawa E D, Baker M D, Aloisio G M, et al. Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse mammalian species [J]. Biology of Reproduction, 2013, 88(4): 103,1-11.
Mao W Z, Chen Y, Chang Q, et al. Histologic observation of ovary in tail Han sheep [J]. Grass-Feeding Livestock, 2011(1): 34-38. doi: 10.3969/j.issn.1003-6377.2011.01.012
Park Y, Maizels E T, Feiger Z J, et al. Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from smad [J]. Journal of Biological Chemistry, 2005, 280(10): 9135-9148. doi: 10.1074/jbc.M409486200