miR-194a MEDIATES DIETARY VITAMIN D3 IN THE JAK-STAT IMMUNE PATHWAY OF YELLOW CATFISH (PELTEOBAGRUS FULVIDRACO)
-
摘要: 为了研究miRNA如何介导饲料维生素D3在黄颡鱼(Pelteobagrus fulvidraco)JAK-STAT通路中调节免疫应答的机制, 选择黄颡鱼幼鱼为主要研究对象, 设计了3组维生素D3浓度分别为1120、3950和16600 IU/kg的饲料, 开展了为期12周养殖实验, 养殖实验结束后进行鮰爱德华氏菌(Edwardsiella ictaluri)攻毒实验。对攻毒后的头肾和脾脏组织进行Illumina高通量测序, 筛选差异表达的miRNAs, 并对差异表达miRNAs进行靶基因的生物信息学预测和富集分析, 发现miR-194a的靶基因富集在JAK-STAT信号通路中; 进一步通过双荧光素酶报告基因实验验证了miR-194a对靶基因jak2a和tyk2具有靶向性调控的关系, 能够发挥对jak2a和tyk2的抑制作用; 通过体外巨噬细胞实验, 在细胞中同样检测到miR-194a可以响应培养基中不同浓度的活性维生素D3, 并对靶基因jak2a与tyk2同样发挥抑制作用; 通过进一步对靶基因在JAK-STAT通路中的下游基因表达检测, 发现随着JAK-STAT信号通路的激活, 抗炎症反应(AIR)因子及被其诱导激活的靶基因的表达量随着培养基中维生素D3浓度升高呈现上升趋势(P<0.05), 炎症通路NF-κB通路被抑制(P<0.05), 促炎因子IL-1β、IL-6和TNF-α等表达量显著下降(P<0.05), 并且调节了巨噬细胞由M1型极化向M2型极化的转变(P<0.05)。研究结果发现miR-194a能在体内体外实验中响应维生素D3的变化, 维生素D3通过促进miR-194a的表达, 负调控靶基因jak2a和tyk2, 并对JAK-STAT通路中的下游基因发挥间接作用, 阐释了miR-194a介导饲料维生素D3通过JAK-STAT信号通路调控黄颡鱼免疫应答的机制。
-
关键词:
- 维生素D3 /
- miR-194a /
- JAK-STAT信号通路 /
- 免疫应答
Abstract: In order to investigate the mechanism about the regulation of immune response by miRNAs mediating feed vitamin D3 in the JAK-STAT pathway of yellow catfish (Pelteobagrus fulvidraco), three diets with vitamin D3 content at 1120, 3950 and 16600 IU/kg were designed for juvenile Pelteobagrus fulvidraco. The growth trial was carried out over a 12-week period, following by an Edwardsiella ictaluri challenge experiment. Illumina high-throughput sequencing of head kidney and spleen after bacteria challenge identified differentially expressed miRNAs. The target genes of miR-194a was enriched in the JAK-STAT pathway. The relationship between miR-194a and the possible target genes jak2a and tyk2 had been verified by a dual luciferase reporter gene assay, which indicated the inhibitory role of miR-194a on jak2a and tyk2. In vitro, miR-194a was also found to respond with different concentrations of vitamin D3, inhibiting the expression of the target genes of jak2a and tyk2. With the activation of the JAK-STAT signaling pathway, the expression of anti-inflammatory response (AIR) factors and the target genes were also activated, the NF-κB pathway was inhibited, with significant decrease in expression of pro-inflammatory factors IL-1β, IL-6 and TNF-α and the transformation of macrophages from M1-type to M2-type polarization was accelerated with the increasing of vitamin D3 concentration (P<0.05). In conclusion, the results of this study demonstrated that miR-194a could respond to different concentration of vitamin D3 in vivo and in vitro experiments. Dietary vitamin D3 up-regulated the expression of miR-194a, which negatively regulated the target genes of jak2a and tyk2, and exerted indirect effects towards the downstream genes in the JAK-STAT pathway, illuminating the mechanism of miR-194a-mediated regulation of immune response by dietary vitamin D3 through the JAK-STAT signaling pathway in Pelteobagrus fulvidraco.-
Key words:
- Vitamin D3 /
- miR-194a /
- JAK-STAT signaling pathway /
- Immune response
-
表 1 实验饲料组成和营养成分
Table 1. Formulation and proximate composition of experimental diets
项目Item 饲料1 Diet 1 饲料2 Diet 2 饲料3 Diet 3 原料(%饲料干重) Ingredient (% dry matter) 血粉Blood meal 10 10 10 脱脂奶粉Skim milk powder 5 5 5 玉米蛋白粉Corn gluten meal 2 2 2 面粉Wheat flour 10 10 10 酪蛋白Casein 30 30 30 豆粕Soybean meal 10 10 10 菜粕Canola meal 10 10 10 大豆油Soybean oil 10 10 10 赖氨酸Lysine 1 1 1 蛋氨酸Met 0.1 0.1 0.1 氯化胆碱Choline Chloride 0.5 0.5 0.5 维生素C Vitamin C 0.5 0.5 0.5 三氧化二钇Yi2O3 0.1 0.1 0.1 抗氧化剂Antioxidant 0.02 0.02 0.02 矿物盐Mineral premix1) 2 2 2 无VD3维生素预混料Vitamin premix2) 0.5 0.5 0.5 维生素D3预混物Vitamin D3 premix3) 0.2 0.8 3.2 麸皮Bran 8.08 7.48 5.08 理论维生素D3 Theoretical value of Vitamin D3 (IU/kg) 1000 4000 16000 营养成分(%饲料干重)Proximate composition (% dry matter) 水分Moisture 5.45 5.23 5.55 粗蛋白Crude protein 47.60 46.44 46.12 粗脂肪Crude lipid 4.53 4.56 4.48 灰分Ash 3.30 3.47 3.37 钙 Calcium 0.26 0.23 027 总磷Total phosphorus 0.34 0.34 0.35 实测维生素D3 Detected value of Vitamin D3 (IU/kg) 1120 3950 16600 注: 1)矿物盐预混料Mineral premix (mg per kg diet): 氯化钠NaCl 198 mg; 硫酸镁MgSO4·7H2O 2995 mg; 硫酸钠Na2SO4 4560 mg; 硫酸钾K2SO4 4098.5 mg; 氯化钙CaCl2·2H2O 2340 mg; 硫酸亚铁FeSO4 499.5 mg; 乳酸钙Calcium lactate 700.5 mg; 硫酸锌ZnSO4·7H2O 70.6 mg; 硫酸锰MnSO4·4H2O 32.5 mg; 硫酸铜CuSO4·5H2O 6.2 mg; 硫酸钴CoSO4 0.2 mg; 碘化钾KI 0.6 mg; 麸皮bran 4498.4 mg; 2)无VD3的维生素预混物(广州市联鲲生物科技有限公司定制) Vitamin premix (Specially made by Nutriera; per kg diet): 维生素A Vitamin A 2750 IU,维生素E Vitamin E 25 IU; 维生素K3 Vitamin K3 5 mg; 维生素B1 Vitamin B1 10 mg; 维生素B6 Vitamin B610 mg; 维生素B12 Vitamin B12 10 mg; 尼克酸niacin 50 mg; 核黄素riboflavin 10 mg; 泛酸钙D-calcium pantothenate 25 mg;叶酸folic acid 5 mg; 肌醇inositol 50 mg; 抗坏血酸ascorbic acid 50 mg; 脱脂米糠bran 1757.43 mg. 3)维生素D3预混物(包膜饲料级别,由广州市联鲲生物科技有限公司提供)Vitamin D3 premix(Coated vitamin D3 was provided by Nutriera; 500000 IU/kg) 表 2 实验中的PCR反应所使用的引物序列
Table 2. Primers used for the PCR reaction in the present study
名称Name 序列 Sequence (5′—3′) miR-194a Forward GCGCGTGTAACAGCAACTCC miR-194a RT primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCACAT miR-192 Forward GCGCGATGACCTATGAATTG miR-192 RT primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGCTGT miR-122 Forward CGCGTGGAGTGTGACAATGG miR-122 RT primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCAAACA miR-730 Forward GCGTCCTCATTGTGCATGCT miR-730 RT primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACACAC miR-734 Forward GCGGTAAATGCTGCAGAATC miR-734 RT primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGGTAC miR-212 Forward CGCGCGTAACAGTCTACAGTC miR-212 RT primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCCAT jak2a Forward CTGAGAGACAGAAAGCAAAGGAG jak2a Reverse GGTAATGAACACCGATGGAGAGT tyk2 Forward GTGCGGCTTGCTCAGATTA tyk2 Reverse GCATTCGTAACATATACTGTATAGGTTT xhol-jak2a aattctaggcgatcgctcgagCTGAGAGAC AGAAAGCAAAGGAGG jak2a-not Ⅰ attttattgcggccagcggccgcGGTAATGAACACCGATGGAGAGTT xhol-tyk2 aattctaggcgatcgctcgagGTAACAAATCGATCCATTCTGCTC tyk2-not Ⅰ attttattgcggccagcggccgcTTGCATTCGTAACATATACTGTATAGGTT jak2a突变Forward GTGTCacaatgGTTCGTCAGTTTCCATGATGACAT jak2a突变Reverse GACGAACcattgtGACACAATGCAAATTTAACTGAGATG tyk2突变Forward CAGTATAacaatgTGCCCACGTTTACAACATGTAGC tyk2突变Reverse GGGCAcattgtTATACTGTATAGGTTTAAGGCAGAAGAGTG 表 3 实验中的PCR反应所使用的引物序列
Table 3. Primers used for the PCR reaction in the present study
名称
Name序列
Sequence (5′—3′)GenBank登录号
GenBank accession No.jak2a-F CTGAGAGACAGAAAGCAAAGGAG KP337350.1 jak2a-R GGTAATGAACACCGATGGAGAGT tyk2-F GTGCGGCTTGCTCAGATTA KP337354.1 tyk2-R GCATTCGTAACATATACTGTATAGGTTT stat3-F ATCGGAGGACCCCCTAACACG KP342388.1 stat3-R TCTTTAGGGATGTCGGGGACC stat4-F GAGACCTCAGATGGAAGAACAAG KP342391.1 stat4-R TCAGAGAGATGGGAATCAGAATA il-12-F ATCATTGTAGTTCCACGCCGA XM_021476743.1 il-12-R TGTAACAGCACCCTGAAAGCA bcl-3-F ATTTTGTGTCAGGCACGCAGA XM_027149518.1 bcl-3-R AAGTTGTTTGGGGATGGGGTA nfil3-F GCGTGATAGTCTCCGCTGTAAA XM_027141051.1 nfil3-R GGAGCCTCTGTTTGGTCTTTGT zfp36-F CAATCAGGTGAACTCAAGCCG XM_027172447.1 zfp36-R GGGGTGTTGGATGGAGAAGAT socs1-F CGCTCTTACACACGGAAAACC MH410161.1 socs1-R GAACGACTCCTTGCTTCCCATA socs3-F AGCGGCTTTTACTGGGACG MH497390.1 socs3-R CACTGCTGCCACCTTCACTGT p65-F AAAGAGCAACGATTCCACCAA MK645606.1 p65-R CGTTGCCCAGTTTGAGGTTAT jak1-F GCACGCTGGTGATTCCTGACTG KP318953.1 jak1-R CTCGCACTATGGCTCTGAAGAACG il-10-F AACAGTTGCTGCTCCTTCATTG KY218793.1 il-10-R AGATTTCAAAAGGTTTCTGGCAT il-1β-F CTGCTCAGCCTGTGTGTTTGGG XM_027139384.1 il-1β-R AGATGTGGAGCGGAGCCTTCG il-6-F CCTGCTCTCGCTCGGACTCTAC XM_027176013.1 il-6-R ACTTCTGGTCTGGAGCGTGAGC tnf-α-F CTGCACGCAGGAGCCTGAATC XM_027133763.1 tnf-α-R AAGTGCTGTGGTCGTGTCTGTG il-12b-F TTGTTGTGTCTTTATTCGTTGGC NM_001007108.1 il-12b-R AGTTGGGAGCAGTCACATTTTTT Il-21-F TTTCTGCTTATGTGTGTGTTGGC NM_001128574.1 Il-21-R TTTCTGTGTCTCTTGTGGTGTGC Il-22-F GATTACGCCAAAGGTGAAAAGA XM_027151712.1 Il-22-R GCAGGATTCAAAGAGGTAGTGG β-actin-F GGATTCGCTGGAGATGATG KM673246.1 β-actin-R TCGTTGTAGAAGGTGTGATG -
Bushati N, Cohen S M. microRNA functions [J]. Annual Review of Cell and Developmental Biology, 2007(23): 175-205. doi: 10.1146/annurev.cellbio.23.090506.123406
Ambros V. The functions of animal microRNAs [J]. Nature, 2004, 431(7006): 350-355. doi: 10.1038/nature02871
Winter J, Jung S, Keller S, et al. Many Roads to maturity: microRNA biogenesis pathways and their regulation [J]. Nature Cell Biology, 2009, 11(3): 228-234. doi: 10.1038/ncb0309-228
de Planell-Saguer M, Rodicio M C. Analytical aspects of microRNA in diagnostics: a review [J]. Analytica Chimica Acta, 2011, 699(2): 134-152. doi: 10.1016/j.aca.2011.05.025
Bartel D P. microRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-97. doi: 10.1016/S0092-8674(04)00045-5
Friedman R C, Farh K K H, Burge C B, et al. Most mammalian mRNAs are conserved targets of microRNAs [J]. Genome Research, 2009, 19(1): 92-105. doi: 10.1101/gr.082701.108
Cui H Y, Chen Q L, Tan X Y, et al. miR-205 mediated Cu-induced lipid accumulation in yellow catfish Pelteobagrus fulvidraco [J]. International Journal of Molecular Sciences, 2018, 19(10): 2980. doi: 10.3390/ijms19102980
Bronner F. Recent developments in intestinal calcium absorption [J]. Nutrition Reviews, 2009, 67(2): 109-113. doi: 10.1111/j.1753-4887.2008.00147.x
Lock E J, WaagbØ R, Wendelaar Bonga S, et al. The significance of vitamin D for fish: a review [J]. Aquaculture Nutrition, 2010, 16(1): 100-116. doi: 10.1111/j.1365-2095.2009.00722.x
Mizwicki M T, Norman A W. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling [J]. Science Signaling, 2009, 2(75): re4.
Guo X, Cheng K, Ma C S, et al. Effects of dietary vitamin d3 on the growth and expression of tlr18, tlr19 and tlr21 in the juvenile yellow catfish Pelteobagrus fulvidraco [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 461-469. doi: 10.7541/2020.056
Cheng K, Tang Q, Guo X, et al. High dose of dietary vitamin D3 modulated the yellow catfish (Pelteobagrus fulvidraco) splenic innate immune response after Edwardsiella ictaluri infection [J]. Fish & Shellfish Immunology, 2020(100): 41-48.
Cheng K, Tang Q, Huang Y, et al. Effect of vitamin D3 on the immunomodulation of head kidney after Edwardsiella ictaluri challenge in yellow catfish (Pelteobagrus fulvidraco) [J]. Fish & Shellfish Immunology, 2020(99): 353-361.
Cheng K, Ma C, Guo X, et al. Vitamin D3 modulates yellow catfish (Pelteobagrus fulvidraco) immune function in vivo and in vitro and this involves the vitamin D3/VDR-type I interferon axis [J]. Developmental & Comparative Immunology, 2020(107): 103644.
Li D B. Effect of dietary vitamin D3 on the expression of immune regulation and immune function in Monopterus albus [D]. Yaan: Sichuan Agricultural University, 2012.
Taveekijakarn P, Miyazaki T, Matsumoto M, et al. Histopathological and haematological changes in amago salmon, Oncorhynchus rhodurus (Jordan & McGregor), fed a vitamin-D-free diet [J]. Journal of Fish Diseases, 1996, 19(4): 289-294. doi: 10.1111/j.1365-2761.1996.tb00706.x
Giangreco A A, Vaishnav A, Wagner D, et al. Tumor suppressor microRNAs, miR-100 and-125b, are regulated by 1, 25-dihydroxyvitamin D in primary prostate cells and in patient tissue [J]. Cancer Prevention Research (Philadelphia, Pa)
, 2013, 6(5): 483-494. doi: 10.1158/1940-6207.CAPR-12-0253 Li F, Zhang A, Shi Y, et al. 1α, 25-Dihydroxyvitamin D3 prevents the differentiation of human lung fibroblasts via microRNA-27b targeting the vitamin D receptor [J]. International Journal of Molecular Medicine, 2015, 36(4): 967-974. doi: 10.3892/ijmm.2015.2318
Xue X, Liu H M, Shao D B, et al. Research progress of regulating mechanism on JAK/STAT signaling pathway [J]. Progress in Modern Biomedicine, 2015, 15(11): 2161-2165. doi: 10.13241/j.cnki.pmb.2015.11.045
Yuan T W, Ma Z L, Jin Y X. Research progress of microRNA in JAK/STAT signal pathway [J]. Chemistry of Life, 2015, 35(4): 495-503. doi: 10.13488/j.smhx.20150405
Du L, Subauste M C, DeSevo C, et al. miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers [J]. PLoS One, 2012, 7(6): e39167. doi: 10.1371/journal.pone.0039167
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3 [J]. Nature Reviews Cancer, 2009, 9(11): 798-809. doi: 10.1038/nrc2734
Aggarwal B B, Kunnumakkara A B, Harikumar K B, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship [J]? Annals of the New York Academy of Sciences, 2009(1171): 59-76. doi: 10.1111/j.1749-6632.2009.04911.x
Shim K J, Jung K H, Chung M K, et al. Development of an in vitro environmental monitoring system by using immune cells [J]. Journal of Health Science, 2002, 48(2): 130-133. doi: 10.1248/jhs.48.130
Alvarez-Díaz S, Valle N, Ferrer-Mayorga G, et al. microRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells [J]. Human Molecular Genetics, 2012, 21(10): 2157-2165. doi: 10.1093/hmg/dds031
Rawlings J S, Rosler K M, Harrison D A. The JAK/STAT signaling pathway [J]. Journal of Cell Science, 2004, 117(8): 1281-1283. doi: 10.1242/jcs.00963
Nicolas F E. Experimental validation of microRNA targets using a luciferase reporter system [J]. Methods in Molecular Biology (Clifton,N J)
, 2011(732): 139-152. Aldred S F, Collins P, Trinklein N. Identifying targets of human micrornas with the LightSwitch Luciferase Assay System using 3′UTR-reporter constructs and a microRNA mimic in adherent cells [J]. Journal of Visualized Experiments, 2011(55): 3343.
Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell, 2005, 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035
Oates A C, Brownlie A, Pratt S J, et al. Gene duplication of zebrafish JAK2 homologs is accompanied by divergent embryonic expression patterns: only jak2a is expressed during erythropoiesis [J]. Blood, 1999, 94(8): 2622-2636. doi: 10.1182/blood.V94.8.2622.420k39_2622_2636
Wu K, Tan X Y, Xu Y H, et al. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism [J]. General and Comparative Endocrinology, 2016(226): 14-26. doi: 10.1016/j.ygcen.2015.12.014
Delhommeau F, Pisani D F, James C, et al. Oncogenic mechanisms in myeloproliferative disorders [J]. Cellular and Molecular Life Sciences CMLS, 2006, 63(24): 2939-2953. doi: 10.1007/s00018-006-6272-7
Samuel S, Sitrin M D. Vitamin D's role in cell proliferation and differentiation [J]. Nutrition Reviews, 2008, 66(suppl. 2): S116-S124.
Velazquez L, Mogensen K E, Barbieri G, et al. Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-α/β and for signal transduction [J]. Journal of Biological Chemistry, 1995, 270(7): 3327-3334. doi: 10.1074/jbc.270.7.3327
Bogdan C, Röllinghoff M, Diefenbach A. The role of nitric oxide in innate immunity [J]. Immunological Reviews, 2000(173): 17-26. doi: 10.1034/j.1600-065X.2000.917307.x
Karaghiosoff M, Neubauer H, Lassnig C, et al. Partial impairment of cytokine responses in Tyk2-deficient mice [J]. Immunity, 2000, 13(4): 549-560. doi: 10.1016/S1074-7613(00)00054-6
Shimoda K, Kato K, Aoki K, et al. Tyk2 plays a restricted role in IFNα signaling, although it is required for IL-12-mediated T cell function [J]. Immunity, 2000, 13(4): 561-571. doi: 10.1016/S1074-7613(00)00055-8
Press C M, Evensen Ø. The morphology of the immune system in teleost fishes [J]. Fish & Shellfish Immunology, 1999, 9(4): 309-318.
Zhang Y A, Sun B J, Nie P. Immune tissues and cells of fish: a review [J]. Acta Hydrobiologica Sinica, 2000, 24(6): 648-654. doi: 10.3321/j.issn:1000-3207.2000.06.012
Zhu Y P, Brown J R, Sag D, et al. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages [J]. Journal of Immunology (Baltimore, Md: 1950), 2015, 194(2): 584-594.
Huang S P, Guan X, Kai G Y, et al. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway [J]. Chinese Journal of Natural Medicines, 2019, 17(5): 372-380. doi: 10.1016/S1875-5364(19)30043-3
Kabiri M, Hemmatpour A, Zare F, et al. Paroxetine modulates immune responses by activating a JAK2/STAT3 signaling pathway [J]. Journal of Biochemical and Molecular Toxicology, 2020, 34(5): e22464.
Smith A M, Qualls J E, O'Brien K, et al. A distal enhancer in Il12b is the target of transcriptional repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3 [J]. The Journal of Biological Chemistry, 2011, 286(26): 23582-23590. doi: 10.1074/jbc.M111.249235
Murray P J. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response [J]. Current Opinion in Pharmacology, 2006, 6(4): 379-386. doi: 10.1016/j.coph.2006.01.010
Hutchins A P, Diez D, Miranda-Saavedra D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges [J]. Briefings in Functional Genomics, 2013, 12(6): 489-498. doi: 10.1093/bfgp/elt028
Wessells J, Baer M, Young H A, et al. BCL-3 and NF-κB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages [J]. Journal of Biological Chemistry, 2004, 279(48): 49995-50003. doi: 10.1074/jbc.M404246200
Schaljo B, Kratochvill F, Gratz N, et al. Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10 [J]. Journal of Immunology (Baltimore, Md: 1950), 2009, 183(2): 1197-1206.
Riley J K, Takeda K, Akira S, et al. Interleukin-10 receptor signaling through the JAK-STAT pathway [J]. Journal of Biological Chemistry, 1999, 274(23): 16513-16521. doi: 10.1074/jbc.274.23.16513
Williams L, Bradley L, Smith A, et al. Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages [J]. Journal of Immunology (Baltimore, Md: 1950), 2004, 172(1): 567-576.
Ryo A, Suizu F, Yoshida Y, et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA [J]. Molecular Cell, 2003, 12(6): 1413-1426. doi: 10.1016/S1097-2765(03)00490-8