• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-3207

主管 中国科学院

主办 中国科学院水生生物研究所、中国海洋湖沼学会

miR-194a介导饲料维生素D3调节黄颡鱼JAK-STAT免疫通路的研究

马春松 程珂 郭勋 王春芳

上一篇

下一篇

马春松, 程珂, 郭勋, 王春芳. 2023. miR-194a介导饲料维生素D3调节黄颡鱼JAK-STAT免疫通路的研究. 水生生物学报, 47(1): 11-24. doi: 10.7541/2022.2021.0291
引用本文: 马春松, 程珂, 郭勋, 王春芳. 2023. miR-194a介导饲料维生素D3调节黄颡鱼JAK-STAT免疫通路的研究. 水生生物学报, 47(1): 11-24. doi: 10.7541/2022.2021.0291
Chun-Song MA, Ke CHENG, Xun GUO, Chun-Fang WANG. 2023. miR-194a MEDIATES DIETARY VITAMIN D3 IN THE JAK-STAT IMMUNE PATHWAY OF YELLOW CATFISH (PELTEOBAGRUS FULVIDRACO). ACTA HYDROBIOLOGICA SINICA, 47(1): 11-24. doi: 10.7541/2022.2021.0291
Citation: Chun-Song MA, Ke CHENG, Xun GUO, Chun-Fang WANG. 2023. miR-194a MEDIATES DIETARY VITAMIN D3 IN THE JAK-STAT IMMUNE PATHWAY OF YELLOW CATFISH (PELTEOBAGRUS FULVIDRACO). ACTA HYDROBIOLOGICA SINICA, 47(1): 11-24. doi: 10.7541/2022.2021.0291

miR-194a介导饲料维生素D3调节黄颡鱼JAK-STAT免疫通路的研究

  • 基金项目:

    国家自然科学基金(31672667)资助

详细信息
    作者简介:

    马春松(1994—), 男, 硕士; 主要研究方向为鱼类营养与健康。E-mail: 389145031@qq.com

    通讯作者: 王春芳(1975—), 主要研究方向为鱼类营养与健康、鱼类精准投喂管理。E-mail: cfwang@mail.hzau.edu.cn
  • 中图分类号: S942.1

miR-194a MEDIATES DIETARY VITAMIN D3 IN THE JAK-STAT IMMUNE PATHWAY OF YELLOW CATFISH (PELTEOBAGRUS FULVIDRACO)

  • Fund Project: 国家自然科学基金(31672667)资助
More Information
  • 为了研究miRNA如何介导饲料维生素D3在黄颡鱼(Pelteobagrus fulvidraco)JAK-STAT通路中调节免疫应答的机制, 选择黄颡鱼幼鱼为主要研究对象, 设计了3组维生素D3浓度分别为1120、3950和16600 IU/kg的饲料, 开展了为期12周养殖实验, 养殖实验结束后进行鮰爱德华氏菌(Edwardsiella ictaluri)攻毒实验。对攻毒后的头肾和脾脏组织进行Illumina高通量测序, 筛选差异表达的miRNAs, 并对差异表达miRNAs进行靶基因的生物信息学预测和富集分析, 发现miR-194a的靶基因富集在JAK-STAT信号通路中; 进一步通过双荧光素酶报告基因实验验证了miR-194a对靶基因jak2atyk2具有靶向性调控的关系, 能够发挥对jak2atyk2的抑制作用; 通过体外巨噬细胞实验, 在细胞中同样检测到miR-194a可以响应培养基中不同浓度的活性维生素D3, 并对靶基因jak2atyk2同样发挥抑制作用; 通过进一步对靶基因在JAK-STAT通路中的下游基因表达检测, 发现随着JAK-STAT信号通路的激活, 抗炎症反应(AIR)因子及被其诱导激活的靶基因的表达量随着培养基中维生素D3浓度升高呈现上升趋势(P<0.05), 炎症通路NF-κB通路被抑制(P<0.05), 促炎因子IL-1β、IL-6TNF-α等表达量显著下降(P<0.05), 并且调节了巨噬细胞由M1型极化向M2型极化的转变(P<0.05)。研究结果发现miR-194a能在体内体外实验中响应维生素D3的变化, 维生素D3通过促进miR-194a的表达, 负调控靶基因jak2atyk2, 并对JAK-STAT通路中的下游基因发挥间接作用, 阐释了miR-194a介导饲料维生素D3通过JAK-STAT信号通路调控黄颡鱼免疫应答的机制。
  • 加载中
  • 图 1  头肾与脾脏组织非编码RNA的分类与注释

    Figure 1.  Classification and annotation of non-coding RNAs from cephalic kidney and spleen tissues

    图 2  头肾与脾脏组织差异表达miRNAs散点图(Ⅰ区域为上调, Ⅱ区域为下调)

    Figure 2.  Scatter plot of differentially expressed miRNAs in head kidney and spleen tissues (Ⅰ zone represents up-regulation, Ⅱ zone represents down-regulation)

    图 3  不同浓度组之间头肾与脾脏组织共表达的差异miRNAs(A为Diet2 vs. Diet 1, B为Diet 3 vs. Diet 1)

    Figure 3.  Differential miRNAs co-expressed in head kidney and spleen tissue between different concentration groups (A for Diet 2 vs. Diet 1, B for Diet 3 vs. Diet 1)

    图 4  头肾组织中差异表达miRNAs的表达量

    Figure 4.  Expression of differentially expressed miRNAs in head kidney

    图 5  头肾与脾脏差异表达miRNAs靶基因GO富集(A、B为头肾, C、D为脾脏)

    Figure 5.  GO enrichment of head kidney and spleen differentially expressed miRNAs target genes (A and B for head kidney, C and D for spleen)

    图 6  头肾与脾脏差异表达miRNAs靶基因KEGG富集(A、B为头肾, C、D为脾脏)

    Figure 6.  KEGG enrichment of head kidney and spleen differentially expressed miRNAs target genes (A and B for head kidney, C and D for spleen)

    图 7  miR-194a在jak2atyk2的3′UTR内的潜在结合位点

    Figure 7.  Potential binding sites for miR-194a within the 3′ UTR of jak2a and tyk2

    图 8  miR-194a mimics和miR-194a NC转染后miR-194a表达量倍数变化

    Figure 8.  Fold change of miR-194a expression after miR-194a mimics and miR-194a NC transfection

    图 9  miR-194a对jak2a(A), tyk2(B)重组质粒荧光素酶活性的影响

    Figure 9.  Effect of miR-194a on luciferase activity of jak2a (A), tyk2 (B) recombinant plasmid

    图 10  miR-194a及靶基因mRNA的表达量

    Figure 10.  Expression of miR-194a and target genes mRNA

    图 11  靶基因通路下游基因mRNA的表达量

    Figure 11.  Expression of target genes at downstream of the pathway

    图 12  通路负反馈因子和炎性因子mRNA的表达量

    Figure 12.  Expression of pathway negative feedback factor and inflammatory factor mRNA

    图 13  巨噬细胞M1型极化标志物 mRNA的表达量

    Figure 13.  Expression of M1-type polarization marker mRNA in macrophages

    图 14  miR-194a介导维生素D3调节JAK-STAT通路示意图

    Figure 14.  Schematic of miR-194a mediates vitamin D3 of the JAK-STAT pathway

    表 1  实验饲料组成和营养成分

    Table 1.  Formulation and proximate composition of experimental diets

    项目Item饲料1 Diet 1饲料2 Diet 2饲料3 Diet 3
    原料(%饲料干重) Ingredient (% dry matter)
    血粉Blood meal101010
    脱脂奶粉Skim milk powder555
    玉米蛋白粉Corn gluten meal222
    面粉Wheat flour101010
    酪蛋白Casein303030
    豆粕Soybean meal101010
    菜粕Canola meal101010
    大豆油Soybean oil101010
    赖氨酸Lysine111
    蛋氨酸Met0.10.10.1
    氯化胆碱Choline Chloride0.50.50.5
    维生素C Vitamin C0.50.50.5
    三氧化二钇Yi2O30.10.10.1
    抗氧化剂Antioxidant0.020.020.02
    矿物盐Mineral premix1)222
    无VD3维生素预混料Vitamin premix2)0.50.50.5
    维生素D3预混物Vitamin D3 premix3)0.20.83.2
    麸皮Bran8.087.485.08
    理论维生素D3 Theoretical value of Vitamin D3 (IU/kg)1000400016000
    营养成分(%饲料干重)Proximate composition (% dry matter)
    水分Moisture5.455.235.55
    粗蛋白Crude protein47.6046.4446.12
    粗脂肪Crude lipid4.534.564.48
    灰分Ash3.303.473.37
    钙 Calcium0.260.23027
    总磷Total phosphorus0.340.340.35
    实测维生素D3 Detected value of Vitamin D3 (IU/kg)1120395016600
    注: 1)矿物盐预混料Mineral premix (mg per kg diet): 氯化钠NaCl 198 mg; 硫酸镁MgSO4·7H2O 2995 mg; 硫酸钠Na2SO4 4560 mg; 硫酸钾K2SO4 4098.5 mg; 氯化钙CaCl2·2H2O 2340 mg; 硫酸亚铁FeSO4 499.5 mg; 乳酸钙Calcium lactate 700.5 mg; 硫酸锌ZnSO4·7H2O 70.6 mg; 硫酸锰MnSO4·4H2O 32.5 mg; 硫酸铜CuSO4·5H2O 6.2 mg; 硫酸钴CoSO4 0.2 mg; 碘化钾KI 0.6 mg; 麸皮bran 4498.4 mg; 2)无VD3的维生素预混物(广州市联鲲生物科技有限公司定制) Vitamin premix (Specially made by Nutriera; per kg diet): 维生素A Vitamin A 2750 IU,维生素E Vitamin E 25 IU; 维生素K3 Vitamin K3 5 mg; 维生素B1 Vitamin B1 10 mg; 维生素B6 Vitamin B610 mg; 维生素B12 Vitamin B12 10 mg; 尼克酸niacin 50 mg; 核黄素riboflavin 10 mg; 泛酸钙D-calcium pantothenate 25 mg;叶酸folic acid 5 mg; 肌醇inositol 50 mg; 抗坏血酸ascorbic acid 50 mg; 脱脂米糠bran 1757.43 mg. 3)维生素D3预混物(包膜饲料级别,由广州市联鲲生物科技有限公司提供)Vitamin D3 premix(Coated vitamin D3 was provided by Nutriera; 500000 IU/kg)
    下载: 导出CSV

    表 2  实验中的PCR反应所使用的引物序列

    Table 2.  Primers used for the PCR reaction in the present study

    名称Name序列 Sequence (5′—3′)
    miR-194a ForwardGCGCGTGTAACAGCAACTCC
    miR-194a RT primerGTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCACAT
    miR-192 ForwardGCGCGATGACCTATGAATTG
    miR-192 RT primerGTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGCTGT
    miR-122 ForwardCGCGTGGAGTGTGACAATGG
    miR-122 RT primerGTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCAAACA
    miR-730 ForwardGCGTCCTCATTGTGCATGCT
    miR-730 RT primerGTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACACAC
    miR-734 ForwardGCGGTAAATGCTGCAGAATC
    miR-734 RT primerGTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCGGTAC
    miR-212 ForwardCGCGCGTAACAGTCTACAGTC
    miR-212 RT primerGTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCCAT
    jak2a ForwardCTGAGAGACAGAAAGCAAAGGAG
    jak2a ReverseGGTAATGAACACCGATGGAGAGT
    tyk2 ForwardGTGCGGCTTGCTCAGATTA
    tyk2 ReverseGCATTCGTAACATATACTGTATAGGTTT
    xhol-jak2aaattctaggcgatcgctcgagCTGAGAGAC AGAAAGCAAAGGAGG
    jak2a-not ⅠattttattgcggccagcggccgcGGTAATGAACACCGATGGAGAGTT
    xhol-tyk2aattctaggcgatcgctcgagGTAACAAATCGATCCATTCTGCTC
    tyk2-not ⅠattttattgcggccagcggccgcTTGCATTCGTAACATATACTGTATAGGTT
    jak2a突变ForwardGTGTCacaatgGTTCGTCAGTTTCCATGATGACAT
    jak2a突变ReverseGACGAACcattgtGACACAATGCAAATTTAACTGAGATG
    tyk2突变ForwardCAGTATAacaatgTGCCCACGTTTACAACATGTAGC
    tyk2突变ReverseGGGCAcattgtTATACTGTATAGGTTTAAGGCAGAAGAGTG
    下载: 导出CSV

    表 3  实验中的PCR反应所使用的引物序列

    Table 3.  Primers used for the PCR reaction in the present study

    名称
    Name
    序列
    Sequence (5′—3′)
    GenBank登录号
    GenBank accession No.
    jak2a-FCTGAGAGACAGAAAGCAAAGGAGKP337350.1
    jak2a-RGGTAATGAACACCGATGGAGAGT
    tyk2-FGTGCGGCTTGCTCAGATTAKP337354.1
    tyk2-RGCATTCGTAACATATACTGTATAGGTTT
    stat3-FATCGGAGGACCCCCTAACACGKP342388.1
    stat3-RTCTTTAGGGATGTCGGGGACC
    stat4-FGAGACCTCAGATGGAAGAACAAGKP342391.1
    stat4-RTCAGAGAGATGGGAATCAGAATA
    il-12-FATCATTGTAGTTCCACGCCGAXM_021476743.1
    il-12-RTGTAACAGCACCCTGAAAGCA
    bcl-3-FATTTTGTGTCAGGCACGCAGAXM_027149518.1
    bcl-3-RAAGTTGTTTGGGGATGGGGTA
    nfil3-FGCGTGATAGTCTCCGCTGTAAAXM_027141051.1
    nfil3-RGGAGCCTCTGTTTGGTCTTTGT
    zfp36-FCAATCAGGTGAACTCAAGCCGXM_027172447.1
    zfp36-RGGGGTGTTGGATGGAGAAGAT
    socs1-FCGCTCTTACACACGGAAAACCMH410161.1
    socs1-RGAACGACTCCTTGCTTCCCATA
    socs3-FAGCGGCTTTTACTGGGACGMH497390.1
    socs3-RCACTGCTGCCACCTTCACTGT
    p65-FAAAGAGCAACGATTCCACCAAMK645606.1
    p65-RCGTTGCCCAGTTTGAGGTTAT
    jak1-FGCACGCTGGTGATTCCTGACTGKP318953.1
    jak1-RCTCGCACTATGGCTCTGAAGAACG
    il-10-FAACAGTTGCTGCTCCTTCATTGKY218793.1
    il-10-RAGATTTCAAAAGGTTTCTGGCAT
    il-1β-FCTGCTCAGCCTGTGTGTTTGGGXM_027139384.1
    il-1β-RAGATGTGGAGCGGAGCCTTCG
    il-6-FCCTGCTCTCGCTCGGACTCTACXM_027176013.1
    il-6-RACTTCTGGTCTGGAGCGTGAGC
    tnf-α-FCTGCACGCAGGAGCCTGAATCXM_027133763.1
    tnf-α-RAAGTGCTGTGGTCGTGTCTGTG
    il-12b-FTTGTTGTGTCTTTATTCGTTGGCNM_001007108.1
    il-12b-RAGTTGGGAGCAGTCACATTTTTT
    Il-21-FTTTCTGCTTATGTGTGTGTTGGCNM_001128574.1
    Il-21-RTTTCTGTGTCTCTTGTGGTGTGC
    Il-22-FGATTACGCCAAAGGTGAAAAGAXM_027151712.1
    Il-22-RGCAGGATTCAAAGAGGTAGTGG
    β-actin-FGGATTCGCTGGAGATGATGKM673246.1
    β-actin-RTCGTTGTAGAAGGTGTGATG
    下载: 导出CSV
  • Bushati N, Cohen S M. microRNA functions [J]. Annual Review of Cell and Developmental Biology, 2007(23): 175-205. doi: 10.1146/annurev.cellbio.23.090506.123406

    Ambros V. The functions of animal microRNAs [J]. Nature, 2004, 431(7006): 350-355. doi: 10.1038/nature02871

    Winter J, Jung S, Keller S, et al. Many Roads to maturity: microRNA biogenesis pathways and their regulation [J]. Nature Cell Biology, 2009, 11(3): 228-234. doi: 10.1038/ncb0309-228

    de Planell-Saguer M, Rodicio M C. Analytical aspects of microRNA in diagnostics: a review [J]. Analytica Chimica Acta, 2011, 699(2): 134-152. doi: 10.1016/j.aca.2011.05.025

    Bartel D P. microRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-97. doi: 10.1016/S0092-8674(04)00045-5

    Friedman R C, Farh K K H, Burge C B, et al. Most mammalian mRNAs are conserved targets of microRNAs [J]. Genome Research, 2009, 19(1): 92-105. doi: 10.1101/gr.082701.108

    Cui H Y, Chen Q L, Tan X Y, et al. miR-205 mediated Cu-induced lipid accumulation in yellow catfish Pelteobagrus fulvidraco [J]. International Journal of Molecular Sciences, 2018, 19(10): 2980. doi: 10.3390/ijms19102980

    Bronner F. Recent developments in intestinal calcium absorption [J]. Nutrition Reviews, 2009, 67(2): 109-113. doi: 10.1111/j.1753-4887.2008.00147.x

    Lock E J, WaagbØ R, Wendelaar Bonga S, et al. The significance of vitamin D for fish: a review [J]. Aquaculture Nutrition, 2010, 16(1): 100-116. doi: 10.1111/j.1365-2095.2009.00722.x

    Mizwicki M T, Norman A W. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling [J]. Science Signaling, 2009, 2(75): re4.

    Guo X, Cheng K, Ma C S, et al. Effects of dietary vitamin d3 on the growth and expression of tlr18, tlr19 and tlr21 in the juvenile yellow catfish Pelteobagrus fulvidraco [J]. Acta Hydrobiologica Sinica, 2020, 44(3): 461-469. doi: 10.7541/2020.056

    Cheng K, Tang Q, Guo X, et al. High dose of dietary vitamin D3 modulated the yellow catfish (Pelteobagrus fulvidraco) splenic innate immune response after Edwardsiella ictaluri infection [J]. Fish & Shellfish Immunology, 2020(100): 41-48.

    Cheng K, Tang Q, Huang Y, et al. Effect of vitamin D3 on the immunomodulation of head kidney after Edwardsiella ictaluri challenge in yellow catfish (Pelteobagrus fulvidraco) [J]. Fish & Shellfish Immunology, 2020(99): 353-361.

    Cheng K, Ma C, Guo X, et al. Vitamin D3 modulates yellow catfish (Pelteobagrus fulvidraco) immune function in vivo and in vitro and this involves the vitamin D3/VDR-type I interferon axis [J]. Developmental & Comparative Immunology, 2020(107): 103644.

    Li D B. Effect of dietary vitamin D3 on the expression of immune regulation and immune function in Monopterus albus [D]. Yaan: Sichuan Agricultural University, 2012.

    Taveekijakarn P, Miyazaki T, Matsumoto M, et al. Histopathological and haematological changes in amago salmon, Oncorhynchus rhodurus (Jordan & McGregor), fed a vitamin-D-free diet [J]. Journal of Fish Diseases, 1996, 19(4): 289-294. doi: 10.1111/j.1365-2761.1996.tb00706.x

    Giangreco A A, Vaishnav A, Wagner D, et al. Tumor suppressor microRNAs, miR-100 and-125b, are regulated by 1, 25-dihydroxyvitamin D in primary prostate cells and in patient tissue [J]. Cancer Prevention Research (Philadelphia, Pa) , 2013, 6(5): 483-494. doi: 10.1158/1940-6207.CAPR-12-0253

    Li F, Zhang A, Shi Y, et al. 1α, 25-Dihydroxyvitamin D3 prevents the differentiation of human lung fibroblasts via microRNA-27b targeting the vitamin D receptor [J]. International Journal of Molecular Medicine, 2015, 36(4): 967-974. doi: 10.3892/ijmm.2015.2318

    Xue X, Liu H M, Shao D B, et al. Research progress of regulating mechanism on JAK/STAT signaling pathway [J]. Progress in Modern Biomedicine, 2015, 15(11): 2161-2165. doi: 10.13241/j.cnki.pmb.2015.11.045

    Yuan T W, Ma Z L, Jin Y X. Research progress of microRNA in JAK/STAT signal pathway [J]. Chemistry of Life, 2015, 35(4): 495-503. doi: 10.13488/j.smhx.20150405

    Du L, Subauste M C, DeSevo C, et al. miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers [J]. PLoS One, 2012, 7(6): e39167. doi: 10.1371/journal.pone.0039167

    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3 [J]. Nature Reviews Cancer, 2009, 9(11): 798-809. doi: 10.1038/nrc2734

    Aggarwal B B, Kunnumakkara A B, Harikumar K B, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship [J]? Annals of the New York Academy of Sciences, 2009(1171): 59-76. doi: 10.1111/j.1749-6632.2009.04911.x

    Shim K J, Jung K H, Chung M K, et al. Development of an in vitro environmental monitoring system by using immune cells [J]. Journal of Health Science, 2002, 48(2): 130-133. doi: 10.1248/jhs.48.130

    Alvarez-Díaz S, Valle N, Ferrer-Mayorga G, et al. microRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells [J]. Human Molecular Genetics, 2012, 21(10): 2157-2165. doi: 10.1093/hmg/dds031

    Rawlings J S, Rosler K M, Harrison D A. The JAK/STAT signaling pathway [J]. Journal of Cell Science, 2004, 117(8): 1281-1283. doi: 10.1242/jcs.00963

    Nicolas F E. Experimental validation of microRNA targets using a luciferase reporter system [J]. Methods in Molecular Biology (Clifton,N J), 2011(732): 139-152.

    Aldred S F, Collins P, Trinklein N. Identifying targets of human micrornas with the LightSwitch Luciferase Assay System using 3′UTR-reporter constructs and a microRNA mimic in adherent cells [J]. Journal of Visualized Experiments, 2011(55): 3343.

    Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell, 2005, 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035

    Oates A C, Brownlie A, Pratt S J, et al. Gene duplication of zebrafish JAK2 homologs is accompanied by divergent embryonic expression patterns: only jak2a is expressed during erythropoiesis [J]. Blood, 1999, 94(8): 2622-2636. doi: 10.1182/blood.V94.8.2622.420k39_2622_2636

    Wu K, Tan X Y, Xu Y H, et al. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism [J]. General and Comparative Endocrinology, 2016(226): 14-26. doi: 10.1016/j.ygcen.2015.12.014

    Delhommeau F, Pisani D F, James C, et al. Oncogenic mechanisms in myeloproliferative disorders [J]. Cellular and Molecular Life Sciences CMLS, 2006, 63(24): 2939-2953. doi: 10.1007/s00018-006-6272-7

    Samuel S, Sitrin M D. Vitamin D's role in cell proliferation and differentiation [J]. Nutrition Reviews, 2008, 66(suppl. 2): S116-S124.

    Velazquez L, Mogensen K E, Barbieri G, et al. Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-α/β and for signal transduction [J]. Journal of Biological Chemistry, 1995, 270(7): 3327-3334. doi: 10.1074/jbc.270.7.3327

    Bogdan C, Röllinghoff M, Diefenbach A. The role of nitric oxide in innate immunity [J]. Immunological Reviews, 2000(173): 17-26. doi: 10.1034/j.1600-065X.2000.917307.x

    Karaghiosoff M, Neubauer H, Lassnig C, et al. Partial impairment of cytokine responses in Tyk2-deficient mice [J]. Immunity, 2000, 13(4): 549-560. doi: 10.1016/S1074-7613(00)00054-6

    Shimoda K, Kato K, Aoki K, et al. Tyk2 plays a restricted role in IFNα signaling, although it is required for IL-12-mediated T cell function [J]. Immunity, 2000, 13(4): 561-571. doi: 10.1016/S1074-7613(00)00055-8

    Press C M, Evensen Ø. The morphology of the immune system in teleost fishes [J]. Fish & Shellfish Immunology, 1999, 9(4): 309-318.

    Zhang Y A, Sun B J, Nie P. Immune tissues and cells of fish: a review [J]. Acta Hydrobiologica Sinica, 2000, 24(6): 648-654. doi: 10.3321/j.issn:1000-3207.2000.06.012

    Zhu Y P, Brown J R, Sag D, et al. Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages [J]. Journal of Immunology (Baltimore, Md: 1950), 2015, 194(2): 584-594.

    Huang S P, Guan X, Kai G Y, et al. Broussonin E suppresses LPS-induced inflammatory response in macrophages via inhibiting MAPK pathway and enhancing JAK2-STAT3 pathway [J]. Chinese Journal of Natural Medicines, 2019, 17(5): 372-380. doi: 10.1016/S1875-5364(19)30043-3

    Kabiri M, Hemmatpour A, Zare F, et al. Paroxetine modulates immune responses by activating a JAK2/STAT3 signaling pathway [J]. Journal of Biochemical and Molecular Toxicology, 2020, 34(5): e22464.

    Smith A M, Qualls J E, O'Brien K, et al. A distal enhancer in Il12b is the target of transcriptional repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3 [J]. The Journal of Biological Chemistry, 2011, 286(26): 23582-23590. doi: 10.1074/jbc.M111.249235

    Murray P J. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response [J]. Current Opinion in Pharmacology, 2006, 6(4): 379-386. doi: 10.1016/j.coph.2006.01.010

    Hutchins A P, Diez D, Miranda-Saavedra D. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges [J]. Briefings in Functional Genomics, 2013, 12(6): 489-498. doi: 10.1093/bfgp/elt028

    Wessells J, Baer M, Young H A, et al. BCL-3 and NF-κB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages [J]. Journal of Biological Chemistry, 2004, 279(48): 49995-50003. doi: 10.1074/jbc.M404246200

    Schaljo B, Kratochvill F, Gratz N, et al. Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10 [J]. Journal of Immunology (Baltimore, Md: 1950), 2009, 183(2): 1197-1206.

    Riley J K, Takeda K, Akira S, et al. Interleukin-10 receptor signaling through the JAK-STAT pathway [J]. Journal of Biological Chemistry, 1999, 274(23): 16513-16521. doi: 10.1074/jbc.274.23.16513

    Williams L, Bradley L, Smith A, et al. Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages [J]. Journal of Immunology (Baltimore, Md: 1950), 2004, 172(1): 567-576.

    Ryo A, Suizu F, Yoshida Y, et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA [J]. Molecular Cell, 2003, 12(6): 1413-1426. doi: 10.1016/S1097-2765(03)00490-8

(14)

(3)

计量
  • 文章访问数:  425
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2021-10-26
修回日期:  2022-07-15
刊出日期:  2023-01-15

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发