• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-3207

主管 中国科学院

主办 中国科学院水生生物研究所、中国海洋湖沼学会

环境、病原、免疫因子三要素与池塘养殖对虾AHPND发生的关联性

于永翔 王印庚 蔡欣欣 张正 廖梅杰 李彬 荣小军 朱洪洋 唐苗苗 王春元

上一篇

下一篇

于永翔, 王印庚, 蔡欣欣, 张正, 廖梅杰, 李彬, 荣小军, 朱洪洋, 唐苗苗, 王春元. 2023. 环境、病原、免疫因子三要素与池塘养殖对虾AHPND发生的关联性. 水生生物学报, 47(1): 1-10. doi: 10.7541/2022.2021.0217
引用本文: 于永翔, 王印庚, 蔡欣欣, 张正, 廖梅杰, 李彬, 荣小军, 朱洪洋, 唐苗苗, 王春元. 2023. 环境、病原、免疫因子三要素与池塘养殖对虾AHPND发生的关联性. 水生生物学报, 47(1): 1-10. doi: 10.7541/2022.2021.0217
Yong-Xiang YU, Yin-Geng WANG, Xin-Xin CAI, Zheng ZHANG, Mei-Jie LIAO, Bin LI, Xiao-Jun RONG, Hong-Yang ZHU, Miao-Miao TANG, Chun-Yuan WANG. 2023. THE OCCURRENCE OF AHPND IN POND CULTURED LITOPENAEUS VANNAMEI AND ITS INFLUENCE ON ENVIRONMENT, PATHOGEN AND IMMUNE FACTORS. ACTA HYDROBIOLOGICA SINICA, 47(1): 1-10. doi: 10.7541/2022.2021.0217
Citation: Yong-Xiang YU, Yin-Geng WANG, Xin-Xin CAI, Zheng ZHANG, Mei-Jie LIAO, Bin LI, Xiao-Jun RONG, Hong-Yang ZHU, Miao-Miao TANG, Chun-Yuan WANG. 2023. THE OCCURRENCE OF AHPND IN POND CULTURED LITOPENAEUS VANNAMEI AND ITS INFLUENCE ON ENVIRONMENT, PATHOGEN AND IMMUNE FACTORS. ACTA HYDROBIOLOGICA SINICA, 47(1): 1-10. doi: 10.7541/2022.2021.0217

环境、病原、免疫因子三要素与池塘养殖对虾AHPND发生的关联性

  • 基金项目:

    国家重点研发计划(2019YFD0900102); 山东省泰山产业领军人才项目(LJNY201802); 苏北科技专项(SZ-LYG202028)资助

详细信息
    作者简介:

    于永翔(1988—), 男, 博士研究生; 研究方向为水产养殖病害防控。E-mail: yuyx@ysfri.ac.cn

    通讯作者: 王印庚, 研究员, 博士生导师; E-mail: wangyg@ysfri.ac.cn
  • 中图分类号: S941.4

THE OCCURRENCE OF AHPND IN POND CULTURED LITOPENAEUS VANNAMEI AND ITS INFLUENCE ON ENVIRONMENT, PATHOGEN AND IMMUNE FACTORS

  • Fund Project: 国家重点研发计划(2019YFD0900102); 山东省泰山产业领军人才项目(LJNY201802); 苏北科技专项(SZ-LYG202028)资助
More Information
  • 为研究虾急性肝胰腺坏死病(Acute Hepatopancreas Necrosis Disease, AHPND)的发生与环境、病原和虾体免疫间的相互关系, 文章对池塘养殖凡纳滨对虾(Litopenaeus vannamei)AHPND发生及其环境、病原、虾体免疫因子进行持续性跟踪监测。结果表明, 试验点的气温、水温、溶解氧(DO)、pH、盐度、氨氮(NH4-N)和亚硝态氮(NO2-N)波动范围为21—29℃、24.8—31℃、1.4—8.32 mg/L、8—8.91、34—50、0.01—0.26 mg/L和0.005—0.212 mg/L; 水体可培养细菌和弧菌数量变化范围为3×103—2.4×105和2×102—1.8×104 CFU/mL, 虾体肝胰腺内可培养细菌和弧菌数量变化范围为9.8×104—8.8×106和3.9×103—3.61×106 CFU/g; 16S rDNA鉴定结果显示, 在可培养优势菌株中, 弧菌检出数量达到135株, 占全部鉴定菌株的61.6%, 其中主要弧菌种类有欧文氏弧菌(Vibrio owensii)、坎贝氏弧菌(V. campbellii)、副溶血弧菌(V. parahaemolyticus)、溶藻弧菌(V. alginolyticus)和哈维氏弧菌(V. harveyi); 虾体中ACP、AKP、SOD、LZM和PO等免疫酶活的变化范围分别为7.5—75、1—8.5、2.4—11.07、1.3—43和6.23—28 U/mg。结合AHPND发生前后各理化因子变化的相关性分析表明, 水温、虾体肝胰腺内可培养细菌和弧菌数量、DO、LZM和PO可作为池塘养殖模式下对虾警示AHPND的指示因子。相关研究结果为指导池塘养殖凡纳滨对虾健康养殖及AHPND临床防控提供数据支撑和科学依据。
  • 加载中
  • 图 1  实验周期内池塘水质因子变化趋势

    Figure 1.  Trends of environmental factors in the ponds water during the experiment period

    图 2  实验周期内池塘水体和对虾肝胰腺内细菌和弧菌数量变化趋势

    Figure 2.  Trend of the number of culturable bacteria in water and shrimp hepatopancreas during the experiment period

    图 3  四个实验点监测周期内对虾机体门免疫酶活性的变化趋势

    Figure 3.  Four experimental points monitor the trend of changes in shrimp phyla immune enzyme activity during the period

    表 1  试验池塘基本信息

    Table 1.  Basic information of the four test ponds

    编号
    No.
    面积
    Aera (hm2)
    水深
    Depth (m)
    苗种投放密度
    Density of initial
    shrimp postlarva
    (ind./m2)
    养殖时间
    Breeding time (d)
    投喂时间
    Feeding time
    Pond 12.401.5022.5685:00; 16:30
    Pond 23.331.3035.0616:30; 16:30
    Pond 33.331.3026.0705:00; 16:30
    Pond 43.201.3021.5605:30; 16:40
    下载: 导出CSV

    表 2  各实验点对虾出现典型AHPND发病和死亡时的信息统计

    Table 2.  AHPND occurrence and distribution information in each test sites

    实验点
    Groups
    对虾AHPND检测阳性且具有典型肝胰腺坏死症状
    发生时间Time points of AHPND positive with typical hepatopancreas necrosis symptom
    7.77.107.127.157.167.26
    Pond 1
    Pond 2+++
    Pond 3++
    Pond 4+++
    注: “+”代表发病, 空白代表未发病Note: The “+” means outbeak of AHPND and the blank means absence points
    下载: 导出CSV

    表 3  基于16S rDNA的对虾肝胰腺可培养优势菌株鉴定信息

    Table 3.  The composition of dominant bacteria in the L. vannamei pond culture system

    菌株
    Strain
    数量
    Number
    菌株
    Strain
    数量
    Number
    Vobrio弧菌属135 Bacillus芽孢杆菌属38
    欧文氏弧菌V. owensii41 枯草芽孢杆菌B. subtilis17
    坎贝氏弧菌V. campbellii23 暹罗芽孢杆菌B. siamensis10
    溶藻弧菌V. alginolyticus21 特基拉芽孢杆菌B. tequilensis4
    副溶血弧菌V. parahaemolyticus10 弯曲芽孢杆菌B. flexus2
    肝弧菌V. hepatarius8 短小芽孢杆菌B. pumilus2
    需钠弧菌V. natriegens6 黄海芽胞杆菌B.marisflavi2
    V. hyugaensis5 B. cabrialesii1
    哈维氏弧菌V. harveyi4 Photobacterium发光杆菌属26
    轮虫弧菌V. rotiferianus3 美人鱼发光杆菌P. damselae25
    蓝弧菌V. azureus2 海洋发光杆菌P. marinum1
    日本弧菌V. japonicus2 Exiguobacterium微小杆菌属6
    沙蚕弧菌V. nereis2 墨西哥微小杆菌E. mexicanum3
    变异弧菌V. variabilis2 印度微小杆菌E. indicum2
    锡那罗州弧菌V. sinaloensis1 深海微小杆菌E. profundum1
    V. ruber1 Acinetobacter不动杆菌属5
    萨迦米弧菌V. sagamiensis1 约氏不动杆菌A. johnsonii2
    拟态弧菌V. mimicus1 琼氏不动杆菌A. junii2
    非典型弧菌V. atypicus1 皮特不动杆菌A. pittii1
    巴西弧菌V. brasiliensis1 Pseudomonas假单胞菌属2
    Shewanella希瓦氏菌属3 P. oryzihabitans1
    海滨希瓦氏菌S. litorisediminis2 恶臭假单胞菌P. alloputida1
    瓦氏希瓦氏菌S. waksmanii1 维氏气单胞菌Aeromonas veronii2
     假交替单胞菌Pseudoalteromonas shioyasakiensis2
    下载: 导出CSV

    表 4  各理化因子的描述统计量

    Table 4.  Descriptive statistics of each physical and chemical factor

    统计量
    Statistic
    全距
    Full range
    极大值
    Maximum
    极小值
    Minimum
    均值
    Average value
    标准差
    Standard deviation
    方差
    Variance
    水温Water temperature (℃)354.930.325.427.41.1321.28
    DO (mg/L)354.795.934.465.51.151.32
    盐度Salinity (‰)3584840432.214.9
    pH350.648.998.358.590.140.02
    氨氮NH4-N (mg/L)350.150.160.010.070.0420.0018
    亚硝态氮NO2-N (mg/L)350.1990.2120.0130.120.0440.002
    SOD3558.233.225.941.532.35
    PO355.2728.1222.8525.141.331.76
    AKP3510.3512.532.154.231.891.83
    ACP3541.374.5533.325.818.8676
    LZM3537.2542.845.59279.6972
    水体细菌
    Culturable bacteria in water
    351.79×1051.86×10570006.02×1074.72×1042.23×109
    水体弧菌
    Culturable Vibrios in water
    351.37×1051.38×1058003.08×1073.38×1041.14×109
    虾体细菌
    Culturable bacteria in shrimp hepatopancreas
    357.88×1077.90×1071.76×1054.54×10121.30×1071.68×1014
    虾体弧菌
    Culturable Vibrios in shrimp hepatopancreas
    354.47×1064.52×1065.50×1042.88×10101.03×1061.07×1012
    下载: 导出CSV
  • Tran L, Nunan L, Redman R M, et al. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp [J]. Diseases of Aquatic Organisms, 2013, 105(1): 45-55. doi: 10.3354/dao02621

    Soto-Rodriguez S A, Gomez-Gil B, Lozano-Olvera R, et al. Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico [J]. Applied and Environmental Microbiology, 2015, 81(5): 1689-1699. doi: 10.1128/AEM.03610-14

    Zhang Q, Liu Q, Liu S, et al. A new nodavirus is associated with covert mortality disease of shrimp [J]. The Journal of General Virology, 2014, 95(12): 2700-2709. doi: 10.1099/vir.0.070078-0

    Li J Y, Shen H, Meng Q G, et al. Research progress on the epidemiology, diagnosis, prevention, and control of acute hepatopancreas necrosis in shrimp [J]. Marine Sciences, 2021, 45(3): 163-172.

    Lai H C, Ng T H, Ando M, et al. Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp [J]. Fish & Shellfish Immunology, 2015, 47(2): 1006-1014.

    Kondo H, Van P T, Dang L T, et al. Draft genome sequence of non-Vibrio parahaemolyticus acute hepatopancreatic necrosis disease strain KC13.17. 5, isolated from diseased shrimp in Vietnam [J]. Genome Announcements, 2015, 3(5): e00978-e00915.

    Liu P C, Lee K K, Yii K C, et al. Isolation of Vibrio harveyi from diseased kuruma prawns Penaeus japonicus [J]. Current Microbiology, 1996, 33(2): 129-132. doi: 10.1007/s002849900087

    Liu L, Xiao, J, Xia X, et al. Draft genome sequence of Vibrio owensii strain SH-14, which causes shrimp acute hepatopancreatic necrosis disease [J]. Genome Announcements, 2015, 3(6): e01395-e01315.

    Ahn Y S, Piamsomboon P, Tang K F J, et al. Complete genome sequence of acute hepatopancreatic necrosis disease-causing Vibrio campbellii LA16-V1, isolated from Penaeus vannamei cultured in a Latin American country [J]. Genome Announcements, 2017, 5(37): e01011-e01017.

    Esteve M, Herrera F C. Hepatopancreatic alterations in Litopenaeus vannamei (Boone, 1939) (Crustacea: Decapoda: Penaeidae) experimentally infected with a Vibrio alginolyticus strain [J]. Journal of Invertebrate Pathology, 2000, 76(1): 1-5. doi: 10.1006/jipa.2000.4951

    Lightner D V, Redman R M, Pantoja C R, et al. Early mortality syndrome affects shrimp in Asia [J]. Global Aquaculture Advocate, 2012, 15(1): 40.

    Lee C T, Chen I T, Yang Y T, et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(34): 10798-10803. doi: 10.1073/pnas.1503129112

    Han J E, Tang K F J, Pantoja C R, et al. qPCR assay for detecting and quantifying a virulence plasmid in acute hepatopancreatic necrosis disease (AHPND) due to pathogenic Vibrio parahaemolyticus [J]. Aquaculture, 2015, 442: 12-15. doi: 10.1016/j.aquaculture.2015.02.024

    Thakur D P, Lin C K. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems [J]. Aquacultural Engineering, 2003, 27(3): 159-176. doi: 10.1016/S0144-8609(02)00055-9

    Boonyawiwat V, Patanasatienkul T, Kasornchandra J, et al. Impact of farm management on expression of early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) on penaeid shrimp farms in Thailand [J]. Journal of Fish Diseases, 2017, 40(5): 649-659. doi: 10.1111/jfd.12545

    Wang K, Wang Y G, Jiang Y, et al. Isolation, identification, and biological characteristics of a pathogenic bacterial strain from cage-cultured black rockfish (Sebastes schlegelii) [J]. Progress in Fishery Sciences, 2019, 40(1): 119-126.

    Zhang Z, Li J, Feng W, et al. Effects of norfloxacin on the non-specific immune response of Fenneropenaeus chinensis [J]. Progress in Fishery Sciences, 2011, 32(2): 53-59. doi: 10.3969/j.issn.1000-7075.2011.02.009

    Kong Q X. Safety early-warning technology of the main pathogenic microorganisms in Penaeus vanname [D]. Zhoushan: Zhejiang Ocean University, 2013: 15.

    Song L S. An early warning system for diseases during mollusc mariculture: exploration and utilization [J]. Journal of Dalian Ocean University, 2020, 35(1): 1-9.

    Zhang J L. Research on water quality factors and aquatic organism in Litopenaeus vannamei [D]. Shanghai: Shanghai Ocean University, 2016: 1-7.

    Ma Z. Study on pre-alarming water quality system for intensively cultured Litopenaeus vannamei [D]. Qingdao: Ocean University of China, 2010: 45.

    Jia X Y, Wang F, Wang C S, et al. Effect of abrupt change in temperature and non-ionic ammonium on survival of Litopenaeus vannamei in seawater and freshwater [J]. Periodical of Ocean University of China, 2013, 43(10): 33-40.

    Ma J X, Liu A Y, Song A Q. A study on the relationship between cod and shrimp viral disease [J]. Marine Sciences, 2002, 26(3): 68-71. doi: 10.3969/j.issn.1000-3096.2002.03.020

    Jiang L X, Pan L Q, Xiao G Q. Effects of ammonia-N on immune parameters of white shrimp Litopenaeus vannamei [J]. Journal of Fishery Sciences of China, 2004, 11(6): 537-541. doi: 10.3321/j.issn:1005-8737.2004.06.009

    Huang X H, Li C L, Zheng L, et al. The toxicity of NO2-N on Litopenaeus vannamei and effects of NO2-N on factors relating to the anti-disease ability [J]. Acta Hydrobiologica Sinica, 2006, 30(4): 466-471. doi: 10.3321/j.issn:1000-3207.2006.04.016

    Sullam K E, Essinger S D, Lozupone C A, et al. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis [J]. Molecular Ecology, 2012, 21(13): 3363-3378. doi: 10.1111/j.1365-294X.2012.05552.x

    Xiong J, Zhu J, Wang K, et al. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation [J]. Microbial Ecology, 2014, 67(2): 256-264. doi: 10.1007/s00248-013-0336-7

    Jayasree L, Janakiram P, Madhavi R. Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra pradesh (India) [J]. Journal of the World Aquaculture Society, 2006, 37(4): 523-532. doi: 10.1111/j.1749-7345.2006.00066.x

    Jiang X, Zhang X, Ren C, et al. Interleukin-2 enhancer binding factor 2 (ILF2) in Pacific white shrimp (Litopenaeus vannamei): alternatively spliced isoforms with different responses in the immune defenses against Vibrio infection [J]. Developmental & Comparative Immunology, 2021(118): 103975.

    Kumar B K, Deekshit V K, Raj J R M, et al. Diversity of Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India [J]. Aquaculture, 2014(433): 247-251. doi: 10.1016/j.aquaculture.2014.06.016

    Joshi J, Srisala J, Truong V H, et al. Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND) [J]. Aquaculture, 2014, 428/429: 297-302. doi: 10.1016/j.aquaculture.2014.03.030

    Chen Y K, Chen Z E, Liang W H, et al. Effect of yeast hydrolysate on non-specific immunity and antioxidant ability of Litopenaeus vannamei under low salinity stress [J]. Journal of Fisheries of China, 2021, 45(12): 2061-2071.

    Ngo H V T, Huang H T, Lee P T, et al. Effects of Phyllanthus amarus extract on nonspecific immune responses, growth, and resistance to Vibrio alginolyticus in white shrimp Litopenaeus vannamei [J]. Fish & Shellfish Immunology, 2020(107): 1-8.

    Zhao H, Chen B, Mo W, et al. Effects of dietary β-1, 3-glucan on growth performance, serum metabolite, immune-related gene expression and resistance to nitrite stress in Litopenaeus vannamei [J]. Acta Hydrobiologica Sinica, 2021, 45(3): 593-600. doi: 10.7541/2021.2020.047

    Liu C H, Chen J C. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus [J]. Fish & Shellfish Immunology, 2004, 16(3): 321-334.

    Zhang K, Pan L, Chen W, et al. Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks [J]. Aquaculture Research, 2017, 48(3): 1194-1208. doi: 10.1111/are.12961

    Xian J A, Chen X D, Wang A L, et al. Effects of dietary manganese levels on growth, antioxidant defense and immune responses of the juvenile white shrimp, Litopenaeus vannamei, reared in low salinity water [J]. Fish & Shellfish Immunology, 2013, 34(6): 1747.

    Tort L, Rotllant J, Liarte C, et al. Effects of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead sea bream Sparus aurata fed with an experimental diet [J]. Aquaculture, 2004, 229(1/2/3/4): 55-65.

    Langston A L, Hoare R, Stefansson M, et al. The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.) [J]. Fish & Shellfish Immunology, 2002, 12(1): 61-76.

(3)

(4)

计量
  • 文章访问数:  754
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2021-08-28
修回日期:  2022-06-10
刊出日期:  2023-01-15

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发