• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-3207

主管 中国科学院

主办 中国科学院水生生物研究所、中国海洋湖沼学会

哈尼梯田稻-渔共作模式下杂交黄颡鱼肠道微生物研究

朱昊俊 强俊 徐钢春 陶易凡 包景文 徐跑

上一篇

下一篇

朱昊俊, 强俊, 徐钢春, 陶易凡, 包景文, 徐跑. 2021. 哈尼梯田稻-渔共作模式下杂交黄颡鱼肠道微生物研究. 水生生物学报, 45(6): 1232-1242. doi: 10.7541/2021.2020.179
引用本文: 朱昊俊, 强俊, 徐钢春, 陶易凡, 包景文, 徐跑. 2021. 哈尼梯田稻-渔共作模式下杂交黄颡鱼肠道微生物研究. 水生生物学报, 45(6): 1232-1242. doi: 10.7541/2021.2020.179
Hao-Jun ZHU, Jun QIANG, Gang-Chun XU, Yi-Fan TAO, Jing-Wen BAO, Pao XU. 2021. MICROBIAL COMMUNITY STRUCTURE OF HYBRID YELLOW CATFISH IN RICE-FISH CO-CULTURE SYSTEM IN HANI TERRACE. ACTA HYDROBIOLOGICA SINICA, 45(6): 1232-1242. doi: 10.7541/2021.2020.179
Citation: Hao-Jun ZHU, Jun QIANG, Gang-Chun XU, Yi-Fan TAO, Jing-Wen BAO, Pao XU. 2021. MICROBIAL COMMUNITY STRUCTURE OF HYBRID YELLOW CATFISH IN RICE-FISH CO-CULTURE SYSTEM IN HANI TERRACE. ACTA HYDROBIOLOGICA SINICA, 45(6): 1232-1242. doi: 10.7541/2021.2020.179

哈尼梯田稻-渔共作模式下杂交黄颡鱼肠道微生物研究

  • 基金项目:

    财政部和农业农村部: 国家现代农业产业技术体系(CARS-46); 中国工程院咨询研究项目“不同海拔适宜种类的筛选与确定”(2019-XZ-25); 中国水产科学研究院院级基本科研业务费专项“红河县冬闲梯田生态养殖技术集成示范”(2020ZX0204); 中国水产科学研究院基本科研业务费(2020TD37)资助

详细信息
    作者简介:

    朱昊俊(1989—), 男, 博士研究生; 研究方向为鱼类肠道微生物和健康养殖。E-mail: sakurazhu@163.com

    通讯作者: 徐跑, 研究员, 博士生导师;E-mail: xup@ffrc.cn
  • 中图分类号: Q938.1

MICROBIAL COMMUNITY STRUCTURE OF HYBRID YELLOW CATFISH IN RICE-FISH CO-CULTURE SYSTEM IN HANI TERRACE

  • Fund Project: 财政部和农业农村部: 国家现代农业产业技术体系(CARS-46); 中国工程院咨询研究项目“不同海拔适宜种类的筛选与确定”(2019-XZ-25); 中国水产科学研究院院级基本科研业务费专项“红河县冬闲梯田生态养殖技术集成示范”(2020ZX0204); 中国水产科学研究院基本科研业务费(2020TD37)资助
More Information
  • 为了探究哈尼梯田稻-鱼共作综合种养模式(稻渔组, DY组)和传统池塘养殖模式(池塘组, CT组)下杂交黄颡鱼(Tachysurus fulvidraco♀×Pseudobagrus vachellii♂)肠道微生物结构变化, 试验采用16S rDNA测序技术对不同养殖模式下黄颡鱼肠道微生物进行分析。测序结果显示, CT组和DY组优势菌门均为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和梭杆菌门(Fusobacteria)。和CT组相比, 在门水平上DY组厚壁菌门和拟杆菌门相对丰度显著上升, 而变形菌门相对丰度显著下降。在属水平上DY组梭状芽孢杆菌属、Romboutsia属、Paludibacter属、Epulopiscium属和拟杆菌属相对丰度显著上升, 而邻单胞菌属丰度显著下降。不同的养殖模式没有显著影响黄颡鱼肠道微生物的丰富度(Richness), 但DY组拥有更高的微生物均匀度(Evenness)。BugBase表型预测结果如下, CT组革兰氏阴性菌, 兼性厌氧菌丰度更高, DY组则革兰氏阳性菌, 厌氧菌丰度更高。同时DY组肠道菌群相较于CT组具有更低的潜在致病性和生物膜形成能力。DY组黄颡鱼肠道微生物多样性更高, 稳定性更好, 对疾病的抵抗力可能更强。水稻-黄颡鱼新型稻渔综合种养模式具有更佳的经济和生态效应。
  • 加载中
  • 图 1  采样地点图

    Figure 1.  Location of sampling sites

    图 2  样本稀释曲线

    Figure 2.  Rarefaction curves and estimators of different samples

    图 3  不同养殖模式肠道微生物Alpha多样性指数

    Figure 3.  Alpha diversity under different culture modes

    图 4  不同养殖模式肠道微生物PCoA分析

    Figure 4.  Principal coordinates analysis of intestinal microbiota in different culture modes

    图 5  不同养殖模式下feature韦恩图展示

    Figure 5.  Venn diagram showing feature in CT vs. DY yellow catfish

    图 6  不同养殖模式下差异feature曼哈顿图展示

    Figure 6.  Manhattan plots showing enriched and depleted feature in CT vs. DY yellow catfish

    图 7  不同养殖模式下肠道微生物的优势菌相对丰度和差异分析

    Figure 7.  Relative abundance and difference analysis of feature identified in CT vs. DY yellow catfish

    图 8  BugBase预测得到的不同养殖模式下肠道菌群表型分析

    Figure 8.  Phenotype analysis of intestinal microflora in CT vs. DY yellow catfish predicted by BugBase

  • Björkstén B. The gut microbiota: a complex ecosystem [J]. Clinical & Experimental Allergy, 2010, 36(10): 1215-1217.

    Jiao G H, Wang B M. Advances in study on differentiation of innate lymphoid cells and its interplay with gut microbiota regulation [J]. Chinese Journal of Gastroenterology, 2013, 18(12): 753-755. doi: 10.3969/j.issn.1008-7125.2013.12.013

    Li C Y, Xu Y J, Liu X Z, et al. Comparative analysis of composition, diversity and origin of intestinal bacterial community in pond-and indoor tank-culture Japanese flounder (Paralichthys olivaceus) [J]. Journal of Fisheries of China, 2015, 39(2): 245-255.

    Dong X X, Lü L L, Zhao W H, et al. Effects of different cultural patterns on microbial communities in the intestine of Macrobrachium rosenbergii and interactions with environment factors [J]. Journal of Shanghai Ocean University, 2019, 28(4): 501-510.

    Lu J, Li X. Review of rice-fish-farming systems in China-One of the Globally Important Ingenious Agricultural Heritage Systems (GIAHS) [J]. Aquaculture, 2006, 206(1-4): 106-113.

    Xie J, Hu L, Tang J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387. doi: 10.1073/pnas.1111043108

    Zhu Z W, Li K X, Wang H. Connotation characteristics, development status and policy suggestions of rice and fishery comprehensive cultivation in China [J]. China Fisheries, 2016, 491(10): 32-35. doi: 10.3969/j.issn.1002-6681.2016.10.014

    Wen Y H, Cao J M, Huang Y H, et al. Research advancement in nutrition requirement of Pelteobagrus fulvidraco [J]. Guangdong Agricultural Sciences, 2011, 38(18): 108-111. doi: 10.3969/j.issn.1004-874X.2011.18.042

    Zhu H J, Qiang J, Xu G C, et al. Study on integrated farming rice and fish model in Honghe Terraced Fields [J]. Scientific Fish Farming, 2020(1): 39-40. doi: 10.3969/j.issn.1004-843X.2020.01.021

    Bhattacharyya P, Sinhababu D P, Roy K S, et al. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system [J]. Agriculture, Ecosystems & Environment, 2013, 176(Supplement S2): 53-62.

    Frei M, Becker K. A greenhouse experiment on growth and yield effects in integrated rice–fish culture [J]. Aquaculture, 2005, 244(1-4): 119-128. doi: 10.1016/j.aquaculture.2004.11.014

    Si G H, Yuan J F, Xu X Y, et al. Effects of an integrated rice-crayfish farming system on soil organic carbon, enzyme activity, and microbial diversity in waterlogged paddy soil [J]. Acta Ecologica Sinica, 2018, 38(1): 29-35. doi: 10.1016/j.chnaes.2018.01.005

    Pascault N, Simon R, Joan A, Pesce S, et al. A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole [J]. FEMS Microbiology Ecology, 2014, 90(3): 563-574. doi: 10.1111/1574-6941.12416

    Hanno T, Bernhar M F, Dörte B, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom [J]. Science, 2012, 336(6081): 608-611. doi: 10.1126/science.1218344

    Whon T W, Kim M S, Roh S W, et al. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere [J]. Journal of Virology, 2012, 86(15): 8221-8231. doi: 10.1128/JVI.00293-12

    Tonya W, Jake L, Jeremy M, et al. BugBase predicts organism-level microbiome phenotypes [J]. BioRxiv, 2017: 133462.

    Le Chatelier E, Nielsen T, Qin J J, et al. Richness of human gut microbiome correlates with metabolic markers [J]. Nature, 2013, 500(7464): 541-546. doi: 10.1038/nature12506

    Zeng M, Cisalpino D, Varadarajan S, et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens [J]. Immunity, 2016, 44(3): 647-658. doi: 10.1016/j.immuni.2016.02.006

    Zhu L X, Baker R D, Zhu R X, et al. Gut microbiota produce alcohol and contribute to NAFLD [J]. Gut, 2016, 65(7): 1232-1232. doi: 10.1136/gutjnl-2016-311571

    Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism [J]. Molecular Psychiatry, 2016(21): 786-796.

    Willis K J, Whittaker R J. Ecology. Species diversity—scale matters [J]. Science, 2002, 295(5558): 1245-1248. doi: 10.1126/science.1067335

    Yang Y. Study on ecological characteristic and technique for safe, good quality and high benefit of rice-fish culture [D]. Yangzhou: Yangzhou University, 2014: 157-159.

    Feng J F, Li F B, Zhou X Y, Xu C C, et al. Nutrient removal ability and economical benefit of a rice-fish co-culture system in aquaculture pond [J]. Ecological Engineering, 2016(94): 315-319.

    Zhao J. Ecological effects and functional mechanism of Chinese softshell turtle (Pelodiscus sinensis)-rice co-culture system [D]. Hangzhou: Zhejiang University, 2018: 106-108.

    Fergus S. Probiotics in perspective [J]. Gastroenterology, 2010, 139(6): 1808-1812. doi: 10.1053/j.gastro.2010.10.025

    Smith K, Mccoy K D, Macpherson A J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota [J]. Seminars in Immunology, 2007, 19(2): 59-69. doi: 10.1016/j.smim.2006.10.002

    Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine [J]. Cell, 2006, 124(4): 837-848. doi: 10.1016/j.cell.2006.02.017

    Shi Y. Microbial diversity research of yellow catfish (Pelteobagrus fulvidraco) gastrointestinal and culture environment of Ipomoea aquatica floating-bed used in fish pond [D]. Wuhan: Huazhong Agricultural University, 2015: 35-47.

    Wu S G, Gao T H, Zheng Y Z, et al. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco) [J]. Aquaculture, 2010, 303(1-4): 1-7. doi: 10.1016/j.aquaculture.2009.12.025

    Steven S, Sandin S A, Farooq A. Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces [J]. FEMS Microbiology Ecology, 2010, 73(1): 31-42.

    Wu S, Wang G, Angert E R, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine [J]. PLoS One, 2012, 7(2): e30440. doi: 10.1371/journal.pone.0030440

    Zhu H J, Qiang J, Tao Y F, et al. Physiological and gut microbiome changes associated with low dietary protein level in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) determined by 16S rRNA sequence analysis [J]. Microbiologyopen, 2020, 9(5): e1000.

    Shin N R, Whon T W, Bae J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota [J]. Trends in Biotechnology, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011

    Yu W N, Dai W F, Tao Z, et al. Characterizing the compositional and functional structures of intestinal microflora between healthy and diseased Litopenaeus vannamei [J]. Journal of Fisheries China, 2018, 42(3): 399-409.

    Liu Z G, Lu M X, Ke X L, et al. Correlation between microflora structure in intestinal tract and aquaculture environment of tilapia (Oreochromis niloticus) and streptococcicosis [J]. Journal of Fisheries China, 2018, 42(10): 1635-1647.

    Herrington D A, Tzipori S, Robins-Browne R M, et al. In vitro and in vivo pathogenicity of Plesiomonas shigelloides [J]. Infection and Immunity, 1987, 55(4): 979-985. doi: 10.1128/iai.55.4.979-985.1987

    Fernandes J, Su W, Rahat-Rozenbloom S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans [J]. Nutrition and Diabetes, 2014(4): e121.

    Bradlow H L. Obesity and the gut microbiome: pathophysiological aspects [J]. Hormone Molecular Biology Clinical Investigation, 2014, 17(1): 53-61.

    Ley R E, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11070-11075. doi: 10.1073/pnas.0504978102

    Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature, 2006, 444(7122): 1027-1031. doi: 10.1038/nature05414

    Ley R E, Turnbaugh P J, Klein S, et al. Microbial ecology: Human gut microbes associated with obesity [J]. Nature, 2006, 444(7122): 1022-1023. doi: 10.1038/4441022a

    Gibbons S M. Microbial community ecology: Function over phylogeny [J]. Nature Ecology Evolution, 2017, 1(1): 32. doi: 10.1038/s41559-016-0032

    Louca S, Parfrey L W, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome [J]. Science, 2016, 353(6305): 1272-1277. doi: 10.1126/science.aaf4507

    Sakata T, Kakimoto D, Sugita H, et al. Characteristics of obligate anaerobic bacteria in the intestines of freshwater fish [J]. Bulletin of the Japanese Society of Scientific Fisheries, 2008, 47(3): 421-427.

    Sugita H, Tokuyama K, Deguchi Y. The intestinal microflora of carp Cyprinus carpio, grass carp Ctenopharyngodon idella and tilapia Sarotherodon niloticus [J]. Nihon-suisan-gakkai-shi, 1985, 51(8): 1325-1329. doi: 10.2331/suisan.51.1325

    Wen J, Sun X F. Research progress on intestinal microecological regulation of aquatic animals [J]. Feed Research, 2009(9): 68-70.

    Costerton J W. Bacterial biofilms: a common cause of persistent infections [J]. Science, 1999, 284(5418): 1318-1322. doi: 10.1126/science.284.5418.1318

    Xu Y K, Dhaouadi Y, Stoodley P, et al. Sensing the unreachable: challenges and opportunities in biofilm detection [J]. Current Opinion in Biotechnology, 2019(64): 79-84.

(8)

计量
  • 文章访问数:  944
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2020-08-10
修回日期:  2020-12-14

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发