MICROBIAL COMMUNITY STRUCTURE OF HYBRID YELLOW CATFISH IN RICE-FISH CO-CULTURE SYSTEM IN HANI TERRACE
-
摘要: 为了探究哈尼梯田稻-鱼共作综合种养模式(稻渔组, DY组)和传统池塘养殖模式(池塘组, CT组)下杂交黄颡鱼(Tachysurus fulvidraco♀×Pseudobagrus vachellii♂)肠道微生物结构变化, 试验采用16S rDNA测序技术对不同养殖模式下黄颡鱼肠道微生物进行分析。测序结果显示, CT组和DY组优势菌门均为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和梭杆菌门(Fusobacteria)。和CT组相比, 在门水平上DY组厚壁菌门和拟杆菌门相对丰度显著上升, 而变形菌门相对丰度显著下降。在属水平上DY组梭状芽孢杆菌属、Romboutsia属、Paludibacter属、Epulopiscium属和拟杆菌属相对丰度显著上升, 而邻单胞菌属丰度显著下降。不同的养殖模式没有显著影响黄颡鱼肠道微生物的丰富度(Richness), 但DY组拥有更高的微生物均匀度(Evenness)。BugBase表型预测结果如下, CT组革兰氏阴性菌, 兼性厌氧菌丰度更高, DY组则革兰氏阳性菌, 厌氧菌丰度更高。同时DY组肠道菌群相较于CT组具有更低的潜在致病性和生物膜形成能力。DY组黄颡鱼肠道微生物多样性更高, 稳定性更好, 对疾病的抵抗力可能更强。水稻-黄颡鱼新型稻渔综合种养模式具有更佳的经济和生态效应。Abstract: Yellow catfish is a high-quality and popular fish that is widely grown in freshwater farms. The rice-fish co-culture systems in Hani Terrace is a new agricultural model. To explore the differences of intestinal microbiota of hybrid yellow catfish (Tachysurus fulvidraco♀×Pseudobagrus vachellii♂) between rice-fish co-culture system (DY group) and traditional pond system (CT group), we conducted feeding experiment in terraces and ponds at an altitude of 634 meters in Honghe Hani Autonomous Prefecture of Yunnan Province. The 16S rRNA gene profiling analysis showed that the dominant flora of yellow catfish were Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria. Different culture patterns did not change the dominant microflora of yellow catfish, but affected the relative abundance of dominant flora. Compared with the CT group, the DY group had more abundance of Firmicutes and Bacteroidetes and less Proteobacteria at phylum level. At genus level, compared with DY group, the CT group had significantly increased abundance of Plesiomonas and significantly decreased abundance of genera Clostridium_sensu_stricto_1, Romboutsia, Paludibacter, Epulopiscium, and Bacteroides. Different culture patterns did not significantly affect the intestinal microbial richness of yellow catfish, but DY group had higher microbial evenness. Moreover, gram_negative and facultatively anaerobic microorganisms were enriched in CT group, and gram_positive and anaerobic microorganisms were enriched in DY group. In addition, gene related to biofilm forming and potential_pathogenicity were depleted in the DY group. These results indicate that DY group had higher intestinal microbial diversity, better stability and stronger resistance to diseases. The rice-fish co-culture system can provide a better living environment for yellow catfish.
-
Key words:
- Hani Terraces /
- the rice-fish co-culture systems /
- Hybrid yellow catfish /
- Gut microbiome
-
-
Björkstén B. The gut microbiota: a complex ecosystem [J]. Clinical & Experimental Allergy, 2010, 36(10): 1215-1217.
Jiao G H, Wang B M. Advances in study on differentiation of innate lymphoid cells and its interplay with gut microbiota regulation [J]. Chinese Journal of Gastroenterology, 2013, 18(12): 753-755. doi: 10.3969/j.issn.1008-7125.2013.12.013
Li C Y, Xu Y J, Liu X Z, et al. Comparative analysis of composition, diversity and origin of intestinal bacterial community in pond-and indoor tank-culture Japanese flounder (Paralichthys olivaceus) [J]. Journal of Fisheries of China, 2015, 39(2): 245-255.
Dong X X, Lü L L, Zhao W H, et al. Effects of different cultural patterns on microbial communities in the intestine of Macrobrachium rosenbergii and interactions with environment factors [J]. Journal of Shanghai Ocean University, 2019, 28(4): 501-510.
Lu J, Li X. Review of rice-fish-farming systems in China-One of the Globally Important Ingenious Agricultural Heritage Systems (GIAHS) [J]. Aquaculture, 2006, 206(1-4): 106-113.
Xie J, Hu L, Tang J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 1381-1387. doi: 10.1073/pnas.1111043108
Zhu Z W, Li K X, Wang H. Connotation characteristics, development status and policy suggestions of rice and fishery comprehensive cultivation in China [J]. China Fisheries, 2016, 491(10): 32-35. doi: 10.3969/j.issn.1002-6681.2016.10.014
Wen Y H, Cao J M, Huang Y H, et al. Research advancement in nutrition requirement of Pelteobagrus fulvidraco [J]. Guangdong Agricultural Sciences, 2011, 38(18): 108-111. doi: 10.3969/j.issn.1004-874X.2011.18.042
Zhu H J, Qiang J, Xu G C, et al. Study on integrated farming rice and fish model in Honghe Terraced Fields [J]. Scientific Fish Farming, 2020(1): 39-40. doi: 10.3969/j.issn.1004-843X.2020.01.021
Bhattacharyya P, Sinhababu D P, Roy K S, et al. Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system [J]. Agriculture, Ecosystems & Environment, 2013, 176(Supplement S2): 53-62.
Frei M, Becker K. A greenhouse experiment on growth and yield effects in integrated rice–fish culture [J]. Aquaculture, 2005, 244(1-4): 119-128. doi: 10.1016/j.aquaculture.2004.11.014
Si G H, Yuan J F, Xu X Y, et al. Effects of an integrated rice-crayfish farming system on soil organic carbon, enzyme activity, and microbial diversity in waterlogged paddy soil [J]. Acta Ecologica Sinica, 2018, 38(1): 29-35. doi: 10.1016/j.chnaes.2018.01.005
Pascault N, Simon R, Joan A, Pesce S, et al. A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole [J]. FEMS Microbiology Ecology, 2014, 90(3): 563-574. doi: 10.1111/1574-6941.12416
Hanno T, Bernhar M F, Dörte B, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom [J]. Science, 2012, 336(6081): 608-611. doi: 10.1126/science.1218344
Whon T W, Kim M S, Roh S W, et al. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere [J]. Journal of Virology, 2012, 86(15): 8221-8231. doi: 10.1128/JVI.00293-12
Tonya W, Jake L, Jeremy M, et al. BugBase predicts organism-level microbiome phenotypes [J]. BioRxiv, 2017: 133462.
Le Chatelier E, Nielsen T, Qin J J, et al. Richness of human gut microbiome correlates with metabolic markers [J]. Nature, 2013, 500(7464): 541-546. doi: 10.1038/nature12506
Zeng M, Cisalpino D, Varadarajan S, et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens [J]. Immunity, 2016, 44(3): 647-658. doi: 10.1016/j.immuni.2016.02.006
Zhu L X, Baker R D, Zhu R X, et al. Gut microbiota produce alcohol and contribute to NAFLD [J]. Gut, 2016, 65(7): 1232-1232. doi: 10.1136/gutjnl-2016-311571
Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism [J]. Molecular Psychiatry, 2016(21): 786-796.
Willis K J, Whittaker R J. Ecology. Species diversity—scale matters [J]. Science, 2002, 295(5558): 1245-1248. doi: 10.1126/science.1067335
Yang Y. Study on ecological characteristic and technique for safe, good quality and high benefit of rice-fish culture [D]. Yangzhou: Yangzhou University, 2014: 157-159.
Feng J F, Li F B, Zhou X Y, Xu C C, et al. Nutrient removal ability and economical benefit of a rice-fish co-culture system in aquaculture pond [J]. Ecological Engineering, 2016(94): 315-319.
Zhao J. Ecological effects and functional mechanism of Chinese softshell turtle (Pelodiscus sinensis)-rice co-culture system [D]. Hangzhou: Zhejiang University, 2018: 106-108.
Fergus S. Probiotics in perspective [J]. Gastroenterology, 2010, 139(6): 1808-1812. doi: 10.1053/j.gastro.2010.10.025
Smith K, Mccoy K D, Macpherson A J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota [J]. Seminars in Immunology, 2007, 19(2): 59-69. doi: 10.1016/j.smim.2006.10.002
Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine [J]. Cell, 2006, 124(4): 837-848. doi: 10.1016/j.cell.2006.02.017
Shi Y. Microbial diversity research of yellow catfish (Pelteobagrus fulvidraco) gastrointestinal and culture environment of Ipomoea aquatica floating-bed used in fish pond [D]. Wuhan: Huazhong Agricultural University, 2015: 35-47.
Wu S G, Gao T H, Zheng Y Z, et al. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco) [J]. Aquaculture, 2010, 303(1-4): 1-7. doi: 10.1016/j.aquaculture.2009.12.025
Steven S, Sandin S A, Farooq A. Abundance, diversity, and activity of microbial assemblages associated with coral reef fish guts and feces [J]. FEMS Microbiology Ecology, 2010, 73(1): 31-42.
Wu S, Wang G, Angert E R, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine [J]. PLoS One, 2012, 7(2): e30440. doi: 10.1371/journal.pone.0030440
Zhu H J, Qiang J, Tao Y F, et al. Physiological and gut microbiome changes associated with low dietary protein level in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) determined by 16S rRNA sequence analysis [J]. Microbiologyopen, 2020, 9(5): e1000.
Shin N R, Whon T W, Bae J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota [J]. Trends in Biotechnology, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011
Yu W N, Dai W F, Tao Z, et al. Characterizing the compositional and functional structures of intestinal microflora between healthy and diseased Litopenaeus vannamei [J]. Journal of Fisheries China, 2018, 42(3): 399-409.
Liu Z G, Lu M X, Ke X L, et al. Correlation between microflora structure in intestinal tract and aquaculture environment of tilapia (Oreochromis niloticus) and streptococcicosis [J]. Journal of Fisheries China, 2018, 42(10): 1635-1647.
Herrington D A, Tzipori S, Robins-Browne R M, et al. In vitro and in vivo pathogenicity of Plesiomonas shigelloides [J]. Infection and Immunity, 1987, 55(4): 979-985. doi: 10.1128/iai.55.4.979-985.1987
Fernandes J, Su W, Rahat-Rozenbloom S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans [J]. Nutrition and Diabetes, 2014(4): e121.
Bradlow H L. Obesity and the gut microbiome: pathophysiological aspects [J]. Hormone Molecular Biology Clinical Investigation, 2014, 17(1): 53-61.
Ley R E, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11070-11075. doi: 10.1073/pnas.0504978102
Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature, 2006, 444(7122): 1027-1031. doi: 10.1038/nature05414
Ley R E, Turnbaugh P J, Klein S, et al. Microbial ecology: Human gut microbes associated with obesity [J]. Nature, 2006, 444(7122): 1022-1023. doi: 10.1038/4441022a
Gibbons S M. Microbial community ecology: Function over phylogeny [J]. Nature Ecology Evolution, 2017, 1(1): 32. doi: 10.1038/s41559-016-0032
Louca S, Parfrey L W, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome [J]. Science, 2016, 353(6305): 1272-1277. doi: 10.1126/science.aaf4507
Sakata T, Kakimoto D, Sugita H, et al. Characteristics of obligate anaerobic bacteria in the intestines of freshwater fish [J]. Bulletin of the Japanese Society of Scientific Fisheries, 2008, 47(3): 421-427.
Sugita H, Tokuyama K, Deguchi Y. The intestinal microflora of carp Cyprinus carpio, grass carp Ctenopharyngodon idella and tilapia Sarotherodon niloticus [J]. Nihon-suisan-gakkai-shi, 1985, 51(8): 1325-1329. doi: 10.2331/suisan.51.1325
Wen J, Sun X F. Research progress on intestinal microecological regulation of aquatic animals [J]. Feed Research, 2009(9): 68-70.
Costerton J W. Bacterial biofilms: a common cause of persistent infections [J]. Science, 1999, 284(5418): 1318-1322. doi: 10.1126/science.284.5418.1318
Xu Y K, Dhaouadi Y, Stoodley P, et al. Sensing the unreachable: challenges and opportunities in biofilm detection [J]. Current Opinion in Biotechnology, 2019(64): 79-84.