• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-3207

主管 中国科学院

主办 中国科学院水生生物研究所、中国海洋湖沼学会

草鱼肠道黏膜厌氧细菌的分离与鉴定

丰文雯 吴山功 郝耀彤 李文祥 李明 邹红 王桂堂

上一篇

下一篇

丰文雯, 吴山功, 郝耀彤, 李文祥, 李明, 邹红, 王桂堂. 2018. 草鱼肠道黏膜厌氧细菌的分离与鉴定. 水生生物学报, 42(1): 11-16. doi: 10.7541/2018.002
引用本文: 丰文雯, 吴山功, 郝耀彤, 李文祥, 李明, 邹红, 王桂堂. 2018. 草鱼肠道黏膜厌氧细菌的分离与鉴定. 水生生物学报, 42(1): 11-16. doi: 10.7541/2018.002
Wen-Wen FENG, Shan-Gong WU, Yao-Tong HAO, Wen-Xiang LI, Ming LI, Hong ZOU, Gui-Tang WANG. 2018. ISOLATION AND IDENTIFICATION OF ANAEROBES IN THE INTESTINAL MUCOSA OF GRASS CARP CTENOPHARYNGODON IDELLUS. ACTA HYDROBIOLOGICA SINICA, 42(1): 11-16. doi: 10.7541/2018.002
Citation: Wen-Wen FENG, Shan-Gong WU, Yao-Tong HAO, Wen-Xiang LI, Ming LI, Hong ZOU, Gui-Tang WANG. 2018. ISOLATION AND IDENTIFICATION OF ANAEROBES IN THE INTESTINAL MUCOSA OF GRASS CARP CTENOPHARYNGODON IDELLUS. ACTA HYDROBIOLOGICA SINICA, 42(1): 11-16. doi: 10.7541/2018.002

草鱼肠道黏膜厌氧细菌的分离与鉴定

  • 基金项目:

    国家自然科学基金(31372571和31272706)资助

详细信息
    作者简介:

    丰文雯(1991—), 女, 安徽桐城人; 硕士研究生; 主要从事鱼类消化道微生物研究。E-mail: fengww1103@126.com

    通讯作者: 吴山功, 副研究员; E-mail: wusgz@ihb.ac.cn
  • 中图分类号: Q938.8

ISOLATION AND IDENTIFICATION OF ANAEROBES IN THE INTESTINAL MUCOSA OF GRASS CARP CTENOPHARYNGODON IDELLUS

  • Fund Project: 国家自然科学基金(31372571和31272706)资助
More Information
  • 研究以草鱼(Ctenopharyngodon idellus)为实验对象, 运用厌氧培养的方法, 研究了饥饿状态下草鱼肠道黏膜固有微生物的类群及其在不同肠段的分布。实验结果显示草鱼前肠、中肠与后肠中细菌的数量分别是3.17×103、1.63×104和1.79×107 cfu/g。研究共分离到274株单菌落, 经16S rRNA鉴定, 分别属于拟杆菌属(Bacteroides spp.)、鲸杆菌属(Cetobacterium spp.)、梭形杆菌属(Fusobacterium spp.)、气单胞菌属(Aeromonas spp.)、希瓦氏菌属(Shewanella spp.)、芽孢杆菌属(Bacillus spp.)、泛菌属(Pantoea spp.)和柠檬酸杆菌属(Citrobacter spp.)8个种类, 其中专性厌氧细菌的数量占9.1%, 兼性厌氧细菌的数量占90.9%。进一步分析发现, 前肠中只分离到兼性厌氧细菌, 中肠与后肠专性厌氧细菌和兼性厌氧细菌都有分布。专性厌氧细菌Bacteroides paurosaccharolyticusBacteroides luti在中肠与后肠都有分布, 而Cetobacterium someraeFusobacterium ulcerans只在后肠有发现。兼性厌氧细菌是草鱼肠道黏膜的优势菌群, 其中嗜水气单胞菌Aeromonas hydrophila占73.7%。草鱼肠道不同部位固有厌氧微生物组成存在差异, 细菌数量也明显不同, 后肠中具有更高的细菌丰度和多样性。
  • 加载中
  • 图 1  基于草鱼肠道黏膜厌氧细菌16S rRNA基因序列构建的系统发育树

    Figure 1.  Neighbor-joining phylogenetic tree of 16S rRNA gene sequences of intestinal mucosa anaerobes of grass carp

    表 1  不同肠段厌氧细菌数量

    Table 1.  Numbers of anaerobic bacteria in different intestinal segment (cfu/g)

    不同重复
    Different repetition
    前肠
    Foregut
    中肠
    Midgut
    后肠
    Hindgut
    1 2.40×103 2.35×104 1.60×107
    2 4.00×103 1.08×104 2.03×107
    3 3.10×103 1.46×104 1.73×107
    平均值Mean 3.17×103 1.63×104 1.79×107
    下载: 导出CSV

    表 2  草鱼肠道可培养专性厌氧细菌数目、种类及分布

    Table 2.  Numbers, species and distribution of cultivable obligate anaerobes in intestine of grass carp

    菌株编号
    Strain No.
    专性厌氧细菌
    Obligate anaerobe
    前肠
    Foregut
    中肠
    Midgut
    后肠
    Hindgut
    总和
    Total
    OA 1 Bacteroides luti 0 8 7 15
    OA 2 Bacteroides paurosaccharolyticus 0 4 2 6
    OA 3 Cetobacterium somerae 0 0 3 3
    OA 4 Fusobacterium ulcerans 0 0 1 1
    总和Total 0 12 13 25
    下载: 导出CSV

    表 3  草鱼肠道可培养兼性厌氧细菌数目、种类及分布

    Table 3.  Numbers, species and distribution of cultivable facultative anaerobes in intestine of grass carp

    菌株编号Strain No. 兼性厌氧细菌Facultative anaerobe 前肠Foregut 中肠Midgut 后肠Hindgut 总和Total
    FA 1 Aeromonas hydrophila 78 69 55 202
    FA 2 Aeromonas allosaccharophila 0 0 1 1
    FA 3 Aeromonas aquatica 6 1 0 7
    FA 4 Aeromonas encheleia 4 3 1 8
    FA 5 Aeromonas piscicola 1 0 0 1
    FA 6 Bacillus licheniformis 5 2 1 8
    FA 7 Citrobacter youngae 2 0 0 2
    FA 8 Pantoea ananatis 0 2 1 3
    FA 9 Shewanella oneidensis 0 0 1 1
    FA 10 Shewanella xiamenensis 1 3 10 14
    FA 11 Flavobacterium acidificum 0 0 2 2
    总和Total 97 80 72 249
    下载: 导出CSV
  • Ringø E, Strøm E, Tabachek J A. Intestinal microflora of salmonids: a review [J]. Aquaculture Research, 1995, 26(10): 773—789

    Trust T, Sparrow R. The bacterial flora in the alimentary tract of freshwater salmonid fishes [J]. Canadian Journal of Microbiology, 1974, 20(9): 1219—1228

    Ramirez R F, Dixon B A. Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma) [J]. Aquaculture, 2003, 227(1): 417—426

    Rajilić-Stojanović M, Heilig H G, Molenaar D, et al. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults [J]. Environmental Microbiology, 2009, 11(7): 1736—1751

    Huber I, Spanggaard B, Appel K, et al. Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum) [J]. Journal of Applied Microbiology, 2004, 96(1): 117—132

    Xia J, Lin G, Fu G, et al. The intestinal microbiome of fish under starvation [J]. BMC Genomics, 2014, 15(1): 266

    Chinese Fishery Statistical Yearbook [M]. Beijing: Chinese Agricultural Press. 2016, 31

    Wu S, Wang G, Angert E R, et al. Composition, diversity, and origin of the bacterial community in grass carp intestine [J]. PloS One, 2012, 7(2): e30440

    Tran N T, Xiong F, Hao Y T, et al. Two biomass preparation methods provide insights into studying microbial communities of intestinal mucosa in grass carp (Ctenopharyngodon idellus) [J]. Aquaculture Research, 2017, DOI: 10.1111/are.13248

    Han S, Liu Y, Zhou Z, et al. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences [J]. Aquaculture Research, 2010, 42(1): 47—56

    Wang W W, Wu S G, Zou H, et al. Characterization of cellulose-decomposing bacteria in the intestine of grass carp, Ctenopharyngodon idellus [J] Acta Hydrobiologica Sinica, 2014, 38(2): 291—297

    Sugita H, Tokuyama K, Deguchi Y. The intestinal microflora of carp Cyprinus carpio, grass carp Ctenopharyngodon idella and tilapia Sarotherodon niloticus [J]. Bulletin of the Japanese Society for the Science of Fish, 1985, 51(8): 1325—1329

    Trust T, Bull L, Currie B, et al. Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri) [J]. Journal of the Fisheries Board of Canada, 1979, 36(10): 1174—1179

    Ringø E, Olsen R E, Mayhew T M, et al. Electron microscopy of the intestinal microflora of fish [J]. Aquaculture, 2003, 227(1-4): 395—415

    Ni D S, Wang J G. Biology and Disease of Grass Carp [M]. Beijing: Science Press. 1999, 29—33

    Wu S, Gao T, Zheng Y, et al. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco) [J]. Aquaculture, 2010, 303(1): 1—7

    Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples [J]. Biotechniques, 2004, 36(5): 808—813

    Cheng Y Y, Wu S G, Zheng Y Z, et al. Microbial diversity in the sediment of a pond mainly stocked with Ctenopharyngodon idellus [J]. Freshwater Fisheries, 2011, 41(6): 43—49

    Cole J R, Wang Q, Fish J A, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis [J]. Nucleic Acids Research, 2013, 42: D633—42

    Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets [J]. Molecular Biology and Evolution, 2016, msw054

    Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences [J]. Journal of Molecular Evolution, 1980, 16(2): 111—120

    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4(4): 406—425

    Xu Y F, Song D J. The structure and function of fish intestinal tissue [J]. Jiangxi Feed, 2004, 4: 16—19

    Ren B Z, Tang Y, Li H Z. Progress of studies on the mechanism and control of activated sludge bulking [J] Journal of University of South China (Science and Technology), 2010, 2: 25

    Cruden D, Markovetz A. Microbial ecology of the cockroach gut [J]. Annual Reviews in Microbiology, 1987, 41(1): 617—643

    Clements K D. Fermentation and Gastrointestinal Microorganisms in Fishes [M]. Springer: Gastrointestinal Microbiology. 1997, 156—198

    Finegold S M, Shepherd W E, Spaulding E H. Practical Anaerobic Bacteriology. Cumitech 5 [M]. American Society for Microbiology, 1977

    Sugita H, Miyajima C, Deguchi Y. The vitamin B12-producing ability of the intestinal microflora of freshwater fish [J]. Aquaculture, 1991, 92: 267—276

    Ray A, Ghosh K, Ringø E. Enzyme-producing bacteria isolated from fish gut: a review [J]. Aquaculture Nutrition, 2012, 18(5): 465—492

    Jiang Y, Xie C, Yang G, et al. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes) [J]. Aquaculture Research, 2011, 42(4): 499—505

    Sugita H, Tanaka K, Yoshinami M, et al. Distribution of Aeromonas species in the intestinal tracts of river fish [J]. Applied and Environmental Microbiology, 1995, 61(11): 4128—4130

    Lee C, Kim J, Hwang K, et al. Fermentation and growth kinetic study of Aeromonas caviae under anaerobic conditions [J]. Applied Microbiology and Biotechnology, 2009, 83(4): 767—773

    Sugita H, Shibuya K, Shimooka H, et al. Antibacterial abilities of intestinal bacteria in freshwater cultured fish [J]. Aquaculture, 1996, 145(1): 195—203

    Tindall B J, Rosselló-Móra R, Busse H-J, et al. Notes on the characterization of prokaryote strains for taxonomic purposes [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(1): 249—266

    Olmos J, Ochoa L, Paniagua-Michel J, et al. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains [J]. Marine Drugs, 2011, 9(6): 1119—1132

    Cutting S M. Bacillus probiotics [J]. Food Microbiology, 2011, 28(2): 214—220

    Zhang C N, Li X F, Xu W N, et al. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis) [J]. Fish & Shellfish Immunology, 2013, 35(5): 1380—1386

    Wu Y C, Gong Q. Effect of feeding microorganisms on growth performance and the activitiesdigestive enzymes of Oreochromis niloticus×O. aureus [J] Acta Hydrobiologica Sinica, 2011, 35(6): 998—1004

(1)

(3)

计量
  • 文章访问数:  1188
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2017-02-14
修回日期:  2017-05-21

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发