Investigation and study of perfluorinated alkylated substances in fish aquatic products in the East China Sea area
-
摘要: 全氟烷基化合物(perfluorinated alkylated substances,PFASs)因具有较高的稳定性、显著的生物富集效应及明显的生物毒性特点,已成为备受关注的持久性有机污染物之一。本研究采用高效液相串联质谱法调查分析了2015—2017年间中国东海区域4个省市(江苏省、上海市、浙江省和福建省)的17个城市12种鱼类水产品519个样品中的19种PFASs的残留情况及分布规律,发现PFASs在大黄鱼(Larimichthys crocea)、鳊(Parabramis pekinensis)、带鱼(Trichiurus lepturus)、河鳗(Anguilla japonica)、鲫(Carassius auratus)和鳙(Aristichthys nobilis )等鱼类水产品中的检出率较高。19种PFASs中,全氟辛烷磺酸(perflurooctane sulfonates,PFOS)的检出率、含量均最高,分布最广。随着PFASs碳链长度的增加,其在生物体内的富集作用增强,长链全氟羧酸化合物在所采集的鱼类样品中均有检出,尤其是目鱼和鳙样品中。通过分析不同地域的PFASs平均检测含量,发现江苏省采集的鱼类样品中PFOS的平均检出含量最高,为0.88 μg/kg;浙江省采集的样品中PFASs的检出种类最多,达10种。采用人均日摄入量法(average daily intake,ADI)评估得到PFOS的风险值低于人均日耐受量(tolerable daily intake,TDI),结果表明,东海沿岸省市鱼类水产品中PFOS的潜在健康风险较低,暂时不会对人体造成即时危害。本研究对了解近3年东海沿岸省市鱼类水产品中PFASs的含量水平及安全性具有一定的参考价值,同时可为长期监测东海沿海省市水产品质量安全水平积累基础数据。Abstract: Owing to their high stability, significant bioaccumulation effect and obvious biological toxicity, perfluorinated alkylated substances (PFASs) as one of the persistent organic pollutants (POPs) have been attracted more attentions. The residues and distribution of 19 kinds of PFASs in 12 fish aquatic products from 17 cities in 4 provinces (Jiangsu, Shanghai, Zhejiang and Fujian) in the East China Sea from 2015 to 2017 were studied by high performance liquid chromatography tandem mass spectrometry. And it was found that the detection rate of PFASs was special high in the fish aquatic products such as Larimichthys crocea, Parabramis pekinensis, Trichiurus lepturus, Anguilla japonica, Carassius auratus and Aristichthys nolilis. Among the 19 kinds of PFASs, perflurooctane sulfonates (PFOS) had the higher detection rate, larger residual contents and wider distribution. With the increase of carbon chain, the bioaccumulation of PFASs in the organism was enhanced, which led to the detection of long-chain perfluorocarboxylic acid compounds in the fish samples, especially in Sepia esculenta and Aristichthys nobilis. Based on the acceptable detection contents of PFASs, the maximum average detection content of PFOS was 0.88 μg/kg in fish samples from Jiangsu province, while the maximum detected species of PFASs was up to 10 in fish samples from Zhejiang province. At last, the average daily intake method (ADI) was adopted to preliminarily assess the risk of PFASs. The results showed that the potential health risk of PFOS among the fish aquatic products in the East China Sea area was relatively low, which did not cause immediate hazard to human temporarily. This study has provided a reference for understanding the content levels and safety of PFASs in aquatic products from the provinces and cities along the East China Sea in recent 5 years, which also accumulated fundamental data for monitoring the quality and safety of aquatic products in this area.
-
Müller C E, Silva A O D, Small J, et al. Biomagnification of perfluorinated compounds in a remote terrestrial food Chain:Lichen-Caribou-Wolf[J]. Environ Sci Technol, 2011, 45(20):8665-8673.
Gulkowska A, Jiang Q, So M K, et al. Persistent perfluorinated acids in se1afood collected from two cities of China[J]. Environ Sci Technol, 2006, 40(12):3736-3741.
Wu Y, Wang Y, Li J, et al. Perfluorinated compounds in seafood from coastal areas in China[J]. Environ Int, 2012, 42(1):67-71.
Olsen G W, Burris J M, Mandel J H, et al. Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees[J]. J Occup Environ Med, 1999, 41(9):799-806.
Loi E I H, Yeung L W Y, Taniyasu S, et al. Trophic magnification of poly- and perfluorinated compounds in a subtropical food web[J]. Environ Sci Technol, 2011, 45(13):5506-5513.
Gawor A, Shunthirasingham C, Hayward S J, et al. Neutral polyfluoroalkyl substances in the global atmosphere[J]. Environ Sci:Processes Impacts, 2014, 16(3):404-413.
Olsen G W, Lange C C, Ellefson M E, et al. Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000-2010[J]. Environ Sci Technol, 2012, 46(11):6330-6338.
Ahrens L, Taniyasu S, Yeung L W Y, et al. Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan[J]. Chemosphere, 2010, 79(3):266-272.
Conder J M, Hoke R A, De W W, et al. Are PFCAs bioaccumulative A critical review and comparison with regulatory criteria and persistent lipophilic compounds[J]. Environ Sci Technol, 2008, 42(4):995-1003.
Krippner J, Brunn H, Falk S, et al. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays)[J]. Chemosphere, 2014, 94:85-90.
Armitage J M, Arnot J A, Wania F, et al. Development and evaluation of a mechanistic bioconcentration model for ionogenic organic chemicals in fish[J]. Environ Toxicol Chem, 2013, 32(1):115-128.
Ng C A, Hungerbuhler K. Bioconcentration of perfluorinated alkyl acids:how important is specific binding[J]. Environ Sci Technol, 2013, 47(13):7214-7223.
Schuetze A, Heberer T, Effkemann S, et al. Occurrence and assessment of perfluorinated chemicals in wild fish from northern germany[J]. Chemosphere, 2010, 78(6):647-652.
Shi Y L, Pan Y Y, Yang R Q, et al. Occurrence of perfluorinated compounds in fish from qinghai-tibetan plateau[J]. Environ Int, 2010, 36(1):46-50.
Ulhaq M, Carlsson G, Örn S, et al. Comparison of developmental toxicity of seven perfluoroalkyl acids to zebrafish embryos[J]. Environ Toxicol Pharmcol, 2013, 36(2):423-426.
EFSA Panel on Contaminants in the Food Chain (CONTAM). Opinion of the Scientific Panel on Contaminants in the Food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts[J]. EFSA J, 2008, 6(7):1-131.
计量
- 文章访问数: 2243
- PDF下载数: 26
- 施引文献: 0