首页 >  中国渔业质量与标准 >  稻渔综合种养模式下多菌灵的残留现状研究进展

2019, 9(4): 64-70. doi: 10.3969/j.issn.2095-1833.2019.04.009

稻渔综合种养模式下多菌灵的残留现状研究进展

1. 上海海洋大学水产与生命学院, 上海 201306;

2. 中国水产科学研究院, 农业农村部水产品质量安全控制重点实验室, 北京 100141

收稿日期:2018-12-26
修回日期:2019-03-27

基金项目:   中国水产科学研究院基本科研业务费资助(2018HY-ZD0607);现代农业产业技术体系建设专项资金资助(CARS-48) 

关键词: 多菌灵 , 稻渔综合种养 , 检测技术 , 残留 , 水产品 , 毒性 , 现状

Detection Technology of Carbendazim and Its Residual in Integrated Aquaculture in Rice Field

1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;

2. Key Labrotary of Quality and safety for Aquatic Products, Minisrty of Agriculture and Rural Affaivs, Chinese Academy of Fishery Sciences, Beijing 100141, China

Received Date:2018-12-26
Accepted Date:2019-03-27

Keywords: carbendazim , integrated aquaculture in rice filed , detection method , residual , aquatic product , toxicity , current situation

稻渔综合种养是一种将水稻与水产养殖动物协调共作的复合型生态农业模式,多菌灵是一种常用于预防水稻稻瘟病的杀菌剂。本研究介绍了多菌灵的理化性质、毒性分析、迁移转化规律及其在水稻、土壤和田水中的检测方法、消解动态及在水生生物中的毒性研究。研究发现,食品中关于多菌灵的残留分析对象主要集中在水果、蔬菜及水稻等作物,而针对水产品中多菌灵的残留测定方法研究尚属空白。本研究可为开展稻渔综合种养模式下多菌灵在水产品中的检测技术研究和该模式下多菌灵使用规范的制定提供理论依据。

The integrated aquaculture in rice filed is a kind of comprehensive ecological agriculture mode, which harmonizes rice with aquatic animals. Carbendazim is a typical fungicide used to prevent rice blast. This paper not only introduces the physicochemical properties, toxicity analysis, migration and transformation rules of carbendazim, but also summarizes the detection methods and digestion dynamics of carbendazim in rice, soil and field water, as well as toxicological research in aquatic animal. It is found that the residue analysis methods of carbendazim in food are mainly focused on fruits, vegetables, rice and other crops, and there is a gap in the study of residue determination methods of carbendazim in aquatic products. This paper aims to provide a theoretical basis for the research on the detection technology of carbendazim in aquatic products and formulate specifications for the use of typical pesticides under the integrated aquaculture in rice filed.

参考文献

[1] 刘其根, 罗衡. 稻渔综合种养的概念、理念体系及主要模式(上)[J]. 科学养鱼, 2017, 7(10):21-23.
[2] 刘其根, 罗衡. 稻渔综合种养的概念、理论体系及主要模式(下)[J]. 科学养鱼, 2018, 8(8):17.
[3] 佀国涵, 彭成林, 徐祥玉, 等. 稻-虾共作模式对涝渍稻田土壤微生物群落多样性及土壤肥力的影响[J]. 土壤, 2016, 48(3):503-509.
[4] 刘萍, 蒋国振, 刘旭, 等. 超高效液相色谱-串联质谱法测定大米中的敌瘟磷、莠去津和多菌灵[J]. 粮食与饲料工业, 2019(2):53-54.
[5] 刘长令. 世界农药大全——杀菌剂卷[M]. 北京:化学工业出版社, 2006.
[6] 罗帅. 防治水稻主要病虫害适用药[J]. 农药市场信息, 2012, 18:37.
[7] 吴文平, 陆远强, 汪勇. 稻瘟病药剂防治效果及对稻米品质的影响[J]. 种子, 2008, 27(9):101-103.
[8] 郭永霞, 侯玉杰, 李梅, 等. 水稻秆腐菌核病药剂防治试验研究[J]. 黑龙江八一农垦大学学报, 2001, 14(4):17-20.
[9] 朱良天. 精细化工产品手册:农药[M]. 北京:化学工业出版社, 2004.
[10] 熊昭娣. 多菌灵对水生态系统的毒性影响研究[J]. 北京农业, 2015, 17:22.
[11] Authority E F S. Reasoned opinion of EFSA:review of the existing maximum residue levels (MRLs) for thiobencarb according to Article 12 of Regulation (EC) No 396/2005[J]. EFSA J, 2011, 9(11):2454.
[12] Yu G C, Wang X F. Research Progress of Toxicology of Carbendazim[J]. Arch Environ Occup H, 2008(17):1834-1835.
[13] 魏中华, 徐娟, 郭明霞, 等. 国内多菌灵的研究进展[J]. 安徽农药科学, 2015, 43(3):125-127.
[14] Zhang X, Song L, Zhao D, et al. Measurement and correlation of solubility of carbendazim in lower alcohols[J]. Therm Anal Calorim, 2018, 659:172-175.
[15] 宋远超, 于功昌, 王筱芬. 多菌灵生殖毒性研究进展[J]. 中国职业医学, 2010, 37(6):505-507.
[16] 张一宾, 张怿. 农药[M]. 北京:中国物资出版社, 1997.
[17] 国家卫生与计划生育委员会. 食品安全国家标准食品中农药最大残留限量:GB/T2763-2016[S]. 北京:中国标准出版社, 2016.
[18] Aire T A. Short-term effects of carbendazim on the gross and microscopic features of the testes of Japanese quails (Coturnix coturnix japonica)[J]. Anato Embryol, 2005, 210(1):43-49.
[19] Wills R B H, Mcglasson W B, Graham D, et al. Postharvest:an introduction to the physiology and handling of fruit, vegetables and ornamentals[J]. J Cheminformatic, 2010, 13(7):1666-1681.
[20] Sarrif A M, Arce G T, Krahn D F, et al. Evaluation of carbendazim for gene mutations in the Salmonella/Ames plate-incorporation assay:the role of aminophenazine impurities[J]. Mutat Res-Gen Tox En, 1994, 321(1/2):43-56.
[21] 张陆伟, 蔡磊明, 赵学平, 等. 3种杀菌剂对日本青鳉早期生命阶段毒性效应初步研究[J]. 环境科学学报, 2013, 33(10):2897-2903.
[22] 贺君, 任小慧, 王帅杰, 等. 农药多菌灵的迁移转化规律研究[J]. 河南农业科学, 2016, 45(10):80-84.
[23] 刘超, 林文锋, 程树军. 利用专家系统评估多菌灵杀菌剂的安全性[J]. 生物化工, 2018, 4(1):51-55.
[24] 王军. QuEChERS-高效液相色谱法检测红葡萄酒中多菌灵和甲霜灵杀菌剂残留[J]. 食品与发酵工业, 2015, 41(1):202-206.
[25] Braga J W B, Bottoli C B G, Jardim I C S F, et al. Determination of pesticides and metabolites in wine by high performance liquid chromatography and second-order calibration methods[J]. J Chromatogr A, 2007(1148):200-210.
[26] 李福琴, 石丽红, 王飞, 等. QuEChERS-液相色谱-串联质谱法同时检测土壤和柑橘中吡唑醚菌酯、甲基硫菌灵及其代谢物多菌灵的残留[J]. 色谱, 2017, 35(6):620-626.
[27] Lacina O, Urbanova J, Poustka J, et al. Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometry[J]. J Chromatogr A, 2010, 1217(5):648-659.
[28] Bakirci G T, Acay Y D B, BakiRcia F, et al. Pesticide residues in fruits and vegetables from the Aegean region Turkey[J]. Food Chem, 2014, 160:379-392.
[29] Blanca D, Medina A, et al. Novel sequential separation and determination of a quaternary mixture of fungicides by using an automatic fluorimetric optosensor[J]. Food Addit Contam A, 2019, 36(2):278-288.
[30] 郭爱华, 王玮, 赵媛媛, 等. 高效液相色谱法测定蔬菜中多菌灵的残留量[J]. 中国卫生检验杂志, 2014, 24(10):1407-1410.
[31] Bhandari G, Zomer P, Atreya K, et al. Pesticide residues in Nepalese vegetables and potential healthrisks[J]. Environ Res, 2019, 172:511-521.
[32] 杨森, 杨金川, 王卉, 等. 高效液相色谱法测定水稻中丙硫多菌灵的残留检测方法及消解动态研究[J]. 农药科学与管理, 2012(9):29-36.
[33] Mountfort K A, Reynolds S L, Thorpe S A, et al. Comparison of ELISA and HPLC techniques for the analysis of carbendazim and thiabendazole residues in fruit and vegetables[J]. Food Agr Immunol, 1994, 6(1):17-22.
[34] Filho A M, Fábio Neves dos Santos, Pereira P A D P. Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical groups in surface and groundwater samples[J]. Microchem J, 2010, 96(1):139-145.
[35] 范宁云, 蔡兴, 李彩霞, 等. 分光光度法测定蔬菜中多菌灵残留量新方法的研究[J]. 甘肃科技, 2009, 25(2):52-53.
[36] Chouteau C, Dzyadevych S, Durrieu C, et al. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples[J]. Biosens Bioelectron, 2006, 21(2):273-281.
[37] 国家质量监督检验检疫总局. 水果、蔬菜中多菌灵残留的测定高效液相色谱法:GB/T 23380-2009[S]. 北京:中国标准出版社, 2009.
[38] 刘双双, 杨仁斌, 陈海平, 等. 多菌灵在水稻及土壤中的消解动态和残留规律研究[J]. 农业环境科学学报, 2012, 31(2):357-361.
[39] 李贝妮, 王亚林, 贾金平. 水果中多菌灵的衍生炭纤维固相微萃取气相色谱测定法[J]. 环境与健康杂志, 2008, 25(3):255-257.
[40] 许行义, 邹巧莉, 钟光剑, 等. 衍生化气相色谱法测定环境水样中的多菌灵[J]. 中国环境监测, 2012, 28(1):41-43.
[41] Dong B,Yang Y,Pang N, et al. Residue dissipation and risk assessment of tebuconazole, thiophanate-methyl and its metabolite in table grape by liquid chromatography-tandem mass spectrometry[J]. Food Chem, 2018, 260:66-72.
[42] Gao J, Chen D, Zhao Y. Determination of carbendazim and thiabendazole in wine and beer by ultra high performance liquid chromatography-high resolution mass spectrometry coupled with dispersive micro solid-phase extraction.[J]. J Chromatogr A, 2018, 36(2):143-149.
[43] 李菊颖, 何健, 孔德洋, 等. 液相色谱串联质谱法测定大米中多菌灵残留量的不确定度分析[J]. 食品科学, 2015, 36(22):169-172.
[44] 中华人民共和国国家卫生健康委员会. 食品安全国家标准蔬菜水果中甲基托布津、多菌灵的测定:GB/T 5009.188-2003[S]. 北京:中国标准出版社, 2003.
[45] Chen M, Zhao Z, Chen Y, et al. Determination of Carbendazim and Metiram pesticides residues in reapeseed and peanut oils by fluorescence spectrophotometry[J]. Measurement, 2015, 73:313-317.
[46] Itak J A, Selisker M Y, Jourdan S W, et al. Determination of benomyl (as carbendazim) and carbendazim in water, soil, and fruit juice by a magnetic particle-based immunoassay[J]. J Agr Food Chem, 1993, 41(12):2329-2332.
[47] Satapornvanit K, Baird D J, Little D C et al. Laboratory toxicity test and post-exposure feeding inhibition using the giant freshwater prawn Macrobrachium rosenbergii[J]. Chemosphere, 2009, 74(9):1209-1215.
[48] 刘双双, 杨仁斌, 傅强, 等. 多菌灵在稻田水、土壤及稻米中的残留研究[J]. 环境科学与管理, 2011, 36(11):30-33.
[49] 浙江农科院原子能利用研究所示踪室,上海原子核所二室. (14)~C-多菌灵的合成及其在水稻和土壤中残留动态的研究[J]. 农药, 1980(4):24-27.
[50] 王献忠. 我国农药生产和使用现状及其展望[J]. 科技信息, 2011(13):777.
[51] 覃慧丽, 梁春意, 高川, 等. 高效液相色谱法测定水稻植株、糙米和土壤中的多菌灵残留量[J]. 现代农药, 2013, 12(5):38-40.
[52] 王青霞. 多菌灵在地下水中的残留分析[J]. 河南农业, 2012, 11:38-39.
[53] 陈曦. 西瓜、水稻中多菌灵的HPLC测定方法和消解动态及最终残留规律研究[D]. 长沙:湖南农业大学, 2014.
[54] Cuppen J G, Pj V D B, Camps E, et al. Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates[J]. Aquat Toxicol, 2000, 48(2/3):233-250.
[55] Brink P J V D, Hattink J, Bransen F, et al. Impact of the fungicide carbendazim in freshwater microcosms. Ⅱ. Zooplankton, primary producers and final conclusions[J]. Aquat Toxicol, 2000, 48(2/3):251-264.
[56] 张陆伟, 蔡磊明, 赵学平, 等. 3种杀菌剂对日本青鳉的急性毒性研究[J]. 环境科学学报, 2013, 33(10):2897-2903.
[57] 化学农药环境安全评价试验准则[J]. 农药科学与管理, 1990, 2:1-5.
[58] 熊昭娣, 周梦颖, 高翔, 等. 多菌灵杀菌剂对青海弧菌和斑马鱼的急性毒性研究[J]. 安徽农业科学, 2017, 45(33):103-105.
[59] 钟小庆. 稻渔综合种养模式及技术[J]. 渔业致富指南, 2018(6):37-38.
[60] 夏际春, 熊飞虎, 尚云龙, 等. 大力发展稻田套养小龙虾综合种养模式[J]. 江西农业, 2017(5):55.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

稻渔综合种养模式下多菌灵的残留现状研究进展