• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 2095-1833

主管 中华人民共和国农业部

主办 中国水产科学研究院

稻渔综合种养模式下多菌灵的残留现状研究进展

李亚梦 李晋成 李芹 田娟娟 解超男 吴立冬 刘欢

上一篇

下一篇

李亚梦, 李晋成, 李芹, 田娟娟, 解超男, 吴立冬, 刘欢. 2019. 稻渔综合种养模式下多菌灵的残留现状研究进展. 中国渔业质量与标准, 9(4): 64-70. doi: 10.3969/j.issn.2095-1833.2019.04.009
引用本文: 李亚梦, 李晋成, 李芹, 田娟娟, 解超男, 吴立冬, 刘欢. 2019. 稻渔综合种养模式下多菌灵的残留现状研究进展. 中国渔业质量与标准, 9(4): 64-70. doi: 10.3969/j.issn.2095-1833.2019.04.009
LI Yameng, LI Jincheng, LI qin, TIAN Juanjuan, XIE Chaonan, WU Lidong, LIU Huan. 2019. Detection Technology of Carbendazim and Its Residual in Integrated Aquaculture in Rice Field. Chinese Fishery Quality and Standards, 9(4): 64-70. doi: 10.3969/j.issn.2095-1833.2019.04.009
Citation: LI Yameng, LI Jincheng, LI qin, TIAN Juanjuan, XIE Chaonan, WU Lidong, LIU Huan. 2019. Detection Technology of Carbendazim and Its Residual in Integrated Aquaculture in Rice Field. Chinese Fishery Quality and Standards, 9(4): 64-70. doi: 10.3969/j.issn.2095-1833.2019.04.009

稻渔综合种养模式下多菌灵的残留现状研究进展

  • 基金项目:

    中国水产科学研究院基本科研业务费资助(2018HY-ZD0607);现代农业产业技术体系建设专项资金资助(CARS-48)

详细信息
    作者简介:

    李亚梦,女,在读硕士,研究方向为水产品质量与安全,18846170480@163.com

  • 中图分类号: S96

Detection Technology of Carbendazim and Its Residual in Integrated Aquaculture in Rice Field

  • Fund Project: 中国水产科学研究院基本科研业务费资助(2018HY-ZD0607);现代农业产业技术体系建设专项资金资助(CARS-48)
  • 稻渔综合种养是一种将水稻与水产养殖动物协调共作的复合型生态农业模式,多菌灵是一种常用于预防水稻稻瘟病的杀菌剂。本研究介绍了多菌灵的理化性质、毒性分析、迁移转化规律及其在水稻、土壤和田水中的检测方法、消解动态及在水生生物中的毒性研究。研究发现,食品中关于多菌灵的残留分析对象主要集中在水果、蔬菜及水稻等作物,而针对水产品中多菌灵的残留测定方法研究尚属空白。本研究可为开展稻渔综合种养模式下多菌灵在水产品中的检测技术研究和该模式下多菌灵使用规范的制定提供理论依据。
  • 加载中
  • Authority E F S. Reasoned opinion of EFSA:review of the existing maximum residue levels (MRLs) for thiobencarb according to Article 12 of Regulation (EC) No 396/2005[J]. EFSA J, 2011, 9(11):2454.

    Yu G C, Wang X F. Research Progress of Toxicology of Carbendazim[J]. Arch Environ Occup H, 2008(17):1834-1835.

    Zhang X, Song L, Zhao D, et al. Measurement and correlation of solubility of carbendazim in lower alcohols[J]. Therm Anal Calorim, 2018, 659:172-175.

    Aire T A. Short-term effects of carbendazim on the gross and microscopic features of the testes of Japanese quails (Coturnix coturnix japonica)[J]. Anato Embryol, 2005, 210(1):43-49.

    Wills R B H, Mcglasson W B, Graham D, et al. Postharvest:an introduction to the physiology and handling of fruit, vegetables and ornamentals[J]. J Cheminformatic, 2010, 13(7):1666-1681.

    Sarrif A M, Arce G T, Krahn D F, et al. Evaluation of carbendazim for gene mutations in the Salmonella/Ames plate-incorporation assay:the role of aminophenazine impurities[J]. Mutat Res-Gen Tox En, 1994, 321(1/2):43-56.

    Braga J W B, Bottoli C B G, Jardim I C S F, et al. Determination of pesticides and metabolites in wine by high performance liquid chromatography and second-order calibration methods[J]. J Chromatogr A, 2007(1148):200-210.

    Lacina O, Urbanova J, Poustka J, et al. Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometry[J]. J Chromatogr A, 2010, 1217(5):648-659.

    Bakirci G T, Acay Y D B, BakiRcia F, et al. Pesticide residues in fruits and vegetables from the Aegean region Turkey[J]. Food Chem, 2014, 160:379-392.

    Blanca D, Medina A, et al. Novel sequential separation and determination of a quaternary mixture of fungicides by using an automatic fluorimetric optosensor[J]. Food Addit Contam A, 2019, 36(2):278-288.

    Bhandari G, Zomer P, Atreya K, et al. Pesticide residues in Nepalese vegetables and potential healthrisks[J]. Environ Res, 2019, 172:511-521.

    Mountfort K A, Reynolds S L, Thorpe S A, et al. Comparison of ELISA and HPLC techniques for the analysis of carbendazim and thiabendazole residues in fruit and vegetables[J]. Food Agr Immunol, 1994, 6(1):17-22.

    Filho A M, Fábio Neves dos Santos, Pereira P A D P. Development, validation and application of a method based on DI-SPME and GC-MS for determination of pesticides of different chemical groups in surface and groundwater samples[J]. Microchem J, 2010, 96(1):139-145.

    Chouteau C, Dzyadevych S, Durrieu C, et al. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples[J]. Biosens Bioelectron, 2006, 21(2):273-281.

    Dong B,Yang Y,Pang N, et al. Residue dissipation and risk assessment of tebuconazole, thiophanate-methyl and its metabolite in table grape by liquid chromatography-tandem mass spectrometry[J]. Food Chem, 2018, 260:66-72.

    Gao J, Chen D, Zhao Y. Determination of carbendazim and thiabendazole in wine and beer by ultra high performance liquid chromatography-high resolution mass spectrometry coupled with dispersive micro solid-phase extraction.[J]. J Chromatogr A, 2018, 36(2):143-149.

    Chen M, Zhao Z, Chen Y, et al. Determination of Carbendazim and Metiram pesticides residues in reapeseed and peanut oils by fluorescence spectrophotometry[J]. Measurement, 2015, 73:313-317.

    Itak J A, Selisker M Y, Jourdan S W, et al. Determination of benomyl (as carbendazim) and carbendazim in water, soil, and fruit juice by a magnetic particle-based immunoassay[J]. J Agr Food Chem, 1993, 41(12):2329-2332.

    Satapornvanit K, Baird D J, Little D C et al. Laboratory toxicity test and post-exposure feeding inhibition using the giant freshwater prawn Macrobrachium rosenbergii[J]. Chemosphere, 2009, 74(9):1209-1215.

    Cuppen J G, Pj V D B, Camps E, et al. Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates[J]. Aquat Toxicol, 2000, 48(2/3):233-250.

    Brink P J V D, Hattink J, Bransen F, et al. Impact of the fungicide carbendazim in freshwater microcosms. Ⅱ. Zooplankton, primary producers and final conclusions[J]. Aquat Toxicol, 2000, 48(2/3):251-264.

计量
  • 文章访问数:  2414
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2018-12-26
修回日期:  2019-03-27

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发