• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1673-9159

主管 广东省高等教育厅

主办 广东海洋大学

我国淡水增养殖系统温室气体排放的时空特征研究进展

张政 刘梅 周聃 罗凯 练青平 邹松保 陈光美 许巧情 原居林

上一篇

下一篇

张政, 刘梅, 周聃, 罗凯, 练青平, 邹松保, 陈光美, 许巧情, 原居林. 2023. 我国淡水增养殖系统温室气体排放的时空特征研究进展. 广东海洋大学学报, 43(6): 153-162. doi: 10.3969/j.issn.1673-9159.2023.06.018
引用本文: 张政, 刘梅, 周聃, 罗凯, 练青平, 邹松保, 陈光美, 许巧情, 原居林. 2023. 我国淡水增养殖系统温室气体排放的时空特征研究进展. 广东海洋大学学报, 43(6): 153-162. doi: 10.3969/j.issn.1673-9159.2023.06.018
ZHANG Zheng, LIU Mei, ZHOU Dan, LUO Kai, LIAN Qingping, ZOU Songbao, CHENG Guangmei, XU Qiaoqing, YUAN Junlin. 2023. Spatial and Temporal Characteristics of Greenhouse Gas Emissions from Freshwater Aquaculture Systems in China. Journal of Guandong Ocean University, 43(6): 153-162. doi: 10.3969/j.issn.1673-9159.2023.06.018
Citation: ZHANG Zheng, LIU Mei, ZHOU Dan, LUO Kai, LIAN Qingping, ZOU Songbao, CHENG Guangmei, XU Qiaoqing, YUAN Junlin. 2023. Spatial and Temporal Characteristics of Greenhouse Gas Emissions from Freshwater Aquaculture Systems in China. Journal of Guandong Ocean University, 43(6): 153-162. doi: 10.3969/j.issn.1673-9159.2023.06.018

我国淡水增养殖系统温室气体排放的时空特征研究进展

  • 基金项目:

    浙江省重点研发“邻雁”项目(2022C02027);湖州市公益应用研究项目(2022GZ24);浙江省自然科学基金资助项目(LTGS23C030005);农业农村部淡水渔业健康养殖重点实验室开放项目(ZJK202312)

详细信息
    作者简介:

    张政(1999-),男,硕士研究生,研究方向为养殖水域生态学。E-mail:18508156721@163.com

  • 中图分类号: Q981.1

Spatial and Temporal Characteristics of Greenhouse Gas Emissions from Freshwater Aquaculture Systems in China

  • Fund Project: 浙江省重点研发“邻雁”项目(2022C02027);湖州市公益应用研究项目(2022GZ24);浙江省自然科学基金资助项目(LTGS23C030005);农业农村部淡水渔业健康养殖重点实验室开放项目(ZJK202312)
  • 【目的】综述4种主要淡水增养殖系统温室气体(N2O、CO2和CH4)排放时空特征、各区域温室气体排放量与增温潜势,提出相应减排措施,为助力农业领域尽早实现“碳达峰,碳中和”提供参考。【方法】根据不同系统温室气体排放研究,总结不同系统的时空排放特征,估算我国内陆不同增养殖系统的排放系数,在此基础上得到各个省份区域单位面积和单位产量的年排放量与增温潜势。【结果】除集约化养殖外,稻渔综合种养、大水面增殖、半集约化养殖温室气体排放均存在明显的时空变化特征:以秦岭淮河为分界,不同模式温室气体排放存在南北差异,各养殖水域内部也存在较高的空间变异性;时间排放特征主要受温度影响,在夏秋高温季节CH4、CO2和N2O的排放强度更大,同时存在明显的昼夜变化。其中N2O排放系数依次为集约化(产量系数26.10 g·kg-1,面积系数157.67 g·m-2)>稻渔综合种养(4.11 g·kg-1,0.40 g·m-2)>大水面增殖和半集约化(0.43 g·kg-1,0.19 g·m-2),CH4的排放系数最高出现在大水面增殖(189.02 g·kg-1,76.37 g·m-2),CO2的排放系数最高出现在稻渔综合种养(3 357.24 g·kg-1,1 079.36 g·m-2)。【结论】我国淡水增养殖系统为温室气体的排放源,存在较明显的时空变化特征,准确编制淡水增养殖系统温室气体排放清单是实现农业“碳达峰,碳中和”的重要一环。
  • 加载中
  • WILLIAMS J, CRUTZEN P J.Nitrous oxide from aquaculture[J].Nature Geoscience, 2010, 3(3):143.

    YUAN J J, XIANG J A, LIU D Y, et al.Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture[J].Nature Climate Change, 2019, 9(4):318-322.

    ACOSTA M, DUŠEK J, CHAMIZO S, et al.Autumnal fluxes of CH4 and CO2 from Mediterranean reed wetland based on eddy covariance and chamber methods[J].CATENA, 2019, 183:104191.

    BASTVIKEN D, COLE J J, PACE M L, et al.Fates of methane from different lake habitats:connecting whole-lake budgets and CH4 emissions[J/OL].Journal of Geophysical Research:Biogeosciences, 2008, 113(G2)[2023-11-19].https://sci-hub.se/10.1029/2007jg000608.

    DELSONTRO T, MCGINNIS D F, SOBEK S, et al.Extreme methane emissions from a Swiss hydropower reservoir:contribution from bubbling sediments[J].Environmental Science& Technology, 2010, 44(7):2419-2425.

    GRUCA-ROKOSZ R, TOMASZEK J A, KOSZELINK P, et al.Methane and Carbon Dioxide Fluxes at the Sediment-Water Interface in Reservoirs[J].Polish Journal of Environment Study, 2011, 20:81-86.

    SOUMIS N, DUCHEMIN É, CANUEL R, et al.Greenhouse gas emissions from reservoirs of the western United States[J/OL].Global Biogeochemical Cycles, 2004, 18(3)[2023-11-19].https://sci-hub.se/10.1029/2003gb002197.

    RAYMOND P A, HARTMANN J, LAUERWALD R, et al.Global carbon dioxide emissions from inland waters[J].Nature, 2013, 503(7476):355-359.

    FRIEDLINGSTEIN P, MICHAEL O, JONES M W, et al.Global Carbon Budget 2022[J].Earth System Science Data, 2022, 14(11):4811-4900.

    ZHANG Y F, TANG K W, YANG P, et al.Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices[J].Agriculture, Ecosystems& Environment, 2022, 338:108110.

    HOLGERSON M A, RAYMOND P A, Large contribution to inland water CO2 and CH4 emissions from very small ponds[J].Nature Geoscience, 2016, 9(3):222-226.

    HUANG W, BI Y H, HU Z Y, et al.Spatio-temporal variations of GHG emissions from surface water of Xiangxi River in Three Gorges Reservoir region, China[J].Ecological Engineering, 2015, 83:28-32.

    ZHENG H, ZHAO X J, ZHAO T Q, et al.Spatial-temporal variations of methane emissions from the Ertan hydroelectric reservoir in southwest China[J].Hydrological Processes, 2015, 25(9):1391-1396.

    YANG L, LU F, WANG X K, et al, Spatial and seasonal variability of diffusive methane emissions from the Three Gorges Reservoir[J].Journal of Geophysical Research:Biogeosciences, 2013, 118(2):471-481.

    CHENG F, ZHANG H M, ZHANG G L, et al, Distribution and emission of N2O in the largest river-reservoir system along the Yellow River[J].Science of the Total Environment, 2019, 666:1209-1219.

    YANG P, LU M, TANG K W, et al, Coastal reservoirs as a source of nitrous oxide:Spatio-temporal patterns and assessment strategy[J].Science of the Total Environment, 2021, 790:147878.

    CHEN H, WU Y Y, YUAN X Z, et al, High methane emissions from a littoral zone on the Qinghai-Tibetan Plateau[J].Atmospheric Environment, 2009, 43(32):4995-5000.

    WANG F S, WANG B L, LIU C Q, et al.Carbon dioxide emission from surface water in cascade reservoirs-river system on the Maotiao River, southwest of China[J].Atmospheric Environment, 2011, 45(23):3827-3834.

    WANG H, LU J W, WANG W D, et al, Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China[J/OL].Journal of Geophysical Research, 2006, 111(D17)[2023-11-19].https://sci-hub.se/10.1029/2005jd006864.

    XING Y P, XIE P, YANG H, et al, Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China[J].Atmospheric Environment, 2005, 39(30):5532-5540.

    LIU X L, LIU C Q, LI S L, et al, Spatiotemporal variations of nitrous oxide(N2O)emissions from two reservoirs in SW China[J].Atmospheric Environment, 2011, 45(31):5458-5468.

    XING Y P, XIE P, YANG H, et al.Diel Variation of Methane Fluxes in Summer in a Eutrophic Subtropical Lake in China[J].Journal of Freshwater Ecology, 2004, 19(4):639-644.

    DATTA A, NAYAK D R, SINHABABU D P, et al.Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of Eastern India[J].Agriculture, Ecosystems& Environment, 2009, 129(1/2/3):228-237.

    BHATTACHARYYA P, SINHABABU D P, ROY K S, et al.Effect of fish species on methane and nitrous oxide emission in relation to soil C, N pools and enzymatic activities in rainfed shallow lowland rice-fish farming system[J].Agriculture, Ecosystems& Environment, 2013, 176:53-62.

    SUN Z, GUO Y, LI C, et al.Effects of straw returning and feeding on greenhouse gas emissions from integrated ricecrayfish farming in Jianghan Plain, China[J].Environmental Science and Pollution Research, 2019, 26(12):11710-11718.

    LI F, FENG J, ZHOU X, et al.Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds[J].Science of Total Environment, 2019, 655:284-291.

    LI C F, CAO C G, WANG J P, et al.Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J].Plant and Soil, 2008, 307(1/2):207-217.

    LIN G, XIN L.Bait input altered microbial community structure and increased greenhouse gases production in coastal wetland sediment[J].Water Research, 2022, 218:118520.

    HARGREAVE J A.Nitrogen biogeochemistry of aquaculture ponds[J].Aquaculture, 1998, 166(3/4):181-212.

    WU S, HU Z Q, HU T, et al.Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China[J].Atmospheric Environment, 2018, 175:135-144.

    YUAN J, LIU D, XIANG J, et al.Methane and nitrous oxide have separated production zones and distinct emission pathways in freshwater aquaculture ponds[J].Water Research, 2021, 190:116739.

    LIU S, HU Z, WU S, et al.Methane and nitrous oxide emissions reduced following conversion of rice paddies to inland crab-fish aquaculture in southeast China[J].Science of the Total Environment, 2016, 50(2):633-642.

    ELLIS R P, URBINA M A, WILSOM R W.Lessons from two high CO2 worlds:future oceans and intensive aquaculture[J].Glob Chang Biol, 2017, 23(6):2141-2148.

    HU Z, LEE J W, CHANDRAN K, et al.Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system[J].Science of the Total Environment, 2014, 470/471:193-200.

    PAUDEL S R, CHOI O, KHANAL S K, et al.Effects of temperature on nitrous oxide N2O emission from intensive aquaculture system[J].Science of the Total Environment, 2015, 518/519:16-23.

    ZHENG Y, WU S, XIAO S, et al.Global methane and nitrous oxide emissions from inland waters and estuaries[J].Global Change Biology, 2022, 28(15):4713-4725.

    YANG H, XIE P, NI L, et al.Underestimation of CH4 emission from freshwater lakes in China[J].Environmental Science& Technology, 2011, 45(10):4203-4204.

    MARTINEZ D, ANDERSON M A.Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA)[J].Science of the Total Environment, 2013, 454/455:457-465.

    HU W P, JOGENSEN S E, ZHANG F B, et al.A model on the carbon cycling in Lake Taihu, China[J].Ecological Modelling, 2011, 222(16):2973-2991.

    ADAMS D D.Diffuse flux of greenhouse gases-methane and carbon dioxide:at the sediment-water interface of some lakes and reservoirs of the world[J/OL].Springer Berlin Heidelberg, 2005, 129-153[2023-12-11] https://scihub.ee/10.1007/978-3-540-26643-3_6.

    XIAO Q T, XU X F, DUAN H T, et al.Coregulation of nitrous oxide emissions by nitrogen and temperature in China's third largest freshwater lake (Lake Taihu)[J].Limnology and Oceanography, 2018, 64(3):1070-1086.

    PEYRON M, BERTORA C, PELISSETTI S, et al.Greenhouse gas emissions as affected by different water management practices in temperate rice paddies[J].Agriculture, Ecosystems& Environment, 2016, 232:17-28.

    NEUBAUER S C, MEGONIGAL J P.Moving beyond global warming potentials to quantify the climatic role of ecosystems[J].Ecosystems, 2015, 18(6):1000-1013.

    DAVIDSON T A, AUDET J, ERIK J, et al.Synergy between nutrients and warming enhances methane ebullition from experimental lakes[J].Nature Climate Change, 2018, 8(2):156-160.

    ZHOU Y, ZHOU L, ZHANG Y, et al.Autochthonous dissolved organic matter potentially fuels methane ebullition from experimental lakes[J].Water Research, 2019, 166:115048.

    YANG X, LU X.Drastic change in China's lakes and reservoirs over the past decades[J].Scientific Reports, 2014, 4:6041.

    WEST W E, COLOSO J J, JONES S E.Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment[J].Freshwater Biology, 2012, 57(5):949-955.

    WEST W E, CREAMER K P, JONES S E.Productivity and depth regulate lake contributions to atmospheric methane[J].Limnology and Oceanography, 2016, 61(S1):S51-S61.

    PILLAY T V R.Aquaculture:principles and practices[J].Fishing News Books, 1990:119-121.

    HU Z, LEE J W, CHANDRAN K, et al.Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission[J].Bioresour Technol, 2013, 130:314-320.

计量
  • 文章访问数:  372
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2023-08-11

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发