• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1673-9159

主管 广东省高等教育厅

主办 广东海洋大学

光周期和维生素对巴夫藻生长和物质生产能力的影响

刘凡 王雨涵 董苗萍 靳翠丽 刘青 周晓见

上一篇

下一篇

刘凡, 王雨涵, 董苗萍, 靳翠丽, 刘青, 周晓见. 2023. 光周期和维生素对巴夫藻生长和物质生产能力的影响. 广东海洋大学学报, 43(6): 89-98. doi: 10.3969/j.issn.1673-9159.2023.06.011
引用本文: 刘凡, 王雨涵, 董苗萍, 靳翠丽, 刘青, 周晓见. 2023. 光周期和维生素对巴夫藻生长和物质生产能力的影响. 广东海洋大学学报, 43(6): 89-98. doi: 10.3969/j.issn.1673-9159.2023.06.011
LIU Fan, WANG Yuhan, DONG Miaoping, JIN Cuili, LIU Qing, ZHOU Xiaojian. 2023. Effects of Photoperiod and Vitamin on Growth and Material Production Capacity of Pavlova sp.. Journal of Guandong Ocean University, 43(6): 89-98. doi: 10.3969/j.issn.1673-9159.2023.06.011
Citation: LIU Fan, WANG Yuhan, DONG Miaoping, JIN Cuili, LIU Qing, ZHOU Xiaojian. 2023. Effects of Photoperiod and Vitamin on Growth and Material Production Capacity of Pavlova sp.. Journal of Guandong Ocean University, 43(6): 89-98. doi: 10.3969/j.issn.1673-9159.2023.06.011

光周期和维生素对巴夫藻生长和物质生产能力的影响

  • 基金项目:

    国家自然科学基金(42177459);扬州大学大学生科创基金(XCX20230622)

详细信息
    作者简介:

    刘凡(1998-),男,硕士研究生,主要研究方向为环境生物学。E-mail:630967286@qq.com

  • 中图分类号: P745

Effects of Photoperiod and Vitamin on Growth and Material Production Capacity of Pavlova sp.

  • Fund Project: 国家自然科学基金(42177459);扬州大学大学生科创基金(XCX20230622)
  • 【目的】研究光周期和维生素对巴夫藻(Pavlova sp.)生长和物质产量的影响,为提高巴夫藻的培养效益提供实验依据。【方法】采用维生素浓度和光周期的双因素实验,培养巴夫藻14 d,测定藻细胞中色素、脂肪、蛋白质和多糖的含量,并分析脂肪酸组成和生物柴油性能的变化。【结果】最适合巴夫藻生长的光周期是16 h∶8 h。在1V 16 h∶8 h的条件下,巴夫藻的生物量干质量和蛋白质产量最高,分别为501.50和55.54 mg·L-1。在8V 8 h∶16 h条件下,岩藻黄素含量和产量最高,分别为6.21 mg·g-1和2.60 mg·L-1。在8V 24 h∶0 h和8V 16 h∶8 h条件下,脂肪含量和产量最高,分别为30.18%和123.87 mg·L-1。最适合二十碳五烯酸(Eicosapentaenoic acid,EPA)生产的光周期为8 h∶16 h,在1V 8 h∶16 h的条件下,EPA占比达15.46%。在4V 24 h∶0 h条件下,生物柴油的十六烷值(CN)达到53.98,不饱和度(DU)和碘值(IV)最低。【结论】与维生素浓度相比,光周期对巴夫藻培养更为重要,光周期不仅影响巴夫藻的生长,还对其物质生产影响显著,并能改变巴夫藻的脂肪酸组成和生物柴油性能。
  • 加载中
  • TOMÁSIA F, ANTERA M, NEREIDA C.Exploring Pavlova pinguis chemical diversity:a potentially novel source of high value compounds[J].Scientific Reports, 2020, 10(1):339.

    SCHADE S, STANGL G I, MEIER T.Distinct microalgae species for food:part 2:comparative life cycle assessment of microalgae and fish for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and protein[J].Journal of Applied Phycology, 2020, 32(5):2997-3013.

    LI S, ZHENG X Y, FANG Q S, et al.Exploring the potential of photosynthetic induction factor for the commercial production of fucoxanthin in Phaeodactylum tricornutum[J].Bioprocess and Biosystems Engineering, 2021, 44:1769-1779.

    KANAMOTO A, KATO Y, YOSHIDA E, et al.Development of a method for fucoxanthin production using the haptophyte marine microalga Pavlova sp.OPMS 30543[J].Marine Biotechnology, 2021, 23(2):331-341.

    HAAS S, BAUER J L, ADAKLI A, et al.Marine microalgae Pavlova viridis and Nannochloropsis sp.as n-3 PUFA source in diets for juvenile European sea bass (Dicentrarchus labrax L.)[J].Journal of Applied Phycology, 2016, 28(2):1011-1021.

    GREEN J C.The fine structure of Pavlova pinguis Green and a preliminary survey of the order Pavlovales (Prymnesiophyceae)[J].British Phycological Journal, 1980, 15:151-191.

    MATA T M, MARTINS A A, CAETANO N S.Microalgae for biodiesel production and other applications:a review[J].Renewable and Sustainable Energy Reviews, 2010, 14(1):217-232.

    JIN CL, DONG MP, ZHANG Y, et al.Improvement in lipid production and biodiesel quality of Pavlova sp.by monochromatic illumination[J].Journal of Oceanology and Limnology, 2023, 41(5):1864-1875

    EL BAKRAOUI H, SLAOUI M, HMOUNI D, et al.Impact of color of light and nitrogen concentration on Pavlova sp.biomass, cells size and biochemical composition[J].Biofuels, 2022, 13(10):1137-1145.

    GUEDES A C, MEIRELES L A, AMARO H M, et al.Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity[J].Journal of the American Oil Chemists'Society, 2010, 87(7):791-801.

    GEORGE B, PANCHA I, DESAI C, et al.Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus:A potential strain for bio-fuel production[J].Bioresource Technology, 2014, 171:367-374.

    MARONEZE M M, DEPRÁ M C, ZEPKA L Q, et al.Artificial lighting strategies in photobioreactors for bioenergy production by Scenedesmus obliquus CPCC05[J].SN Applied Sciences, 2019, 1(12):1695.

    PEREIRA J, SIMÕES M, SILVA J L.Microalgal assimilation of vitamin B(12) toward the production of a superfood[J].Journal of Food Biochemistry, 2019, 43(8):e12911.

    TANDON P, JIN Q, HUANG L M.A promising approach to enhance microalgae productivity by exogenous supply of vitamins[J].Microbial Cell Factories, 2017, 16(1):1-13.

    LI M, ZHU Q, HU C W, et al.Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae):effects on lipid peroxidation and antioxidant enzymes[J].Journal of Environmental Sciences, 2007, 19(11):1330-1335.

    HOSSEINZADEH GHARAJEH N, VALIZADEH M, DORANI E, et al.Biochemical profiling of three indigenous Dunaliella isolates with main focus on fatty acid composition towards potential biotechnological application[J].Biotechnology Reports, 2020, 26:e00479.

    SERVAITES J C, FAETH J L, SIDHU S S.A dye binding method for measurement of total protein in microalgae[J].Analytical Biochemistry, 2012, 421(1):75-80.

    LIU J Y.Optimisation of biomass and lipid production by adjusting the interspecific competition mode of Dunaliella salina and Nannochloropsis gaditana in mixed culture[J].Journal of Applied Phycology, 2014, 26(1):163-171.

    YU B Q, QIAN S Y, LIU Q, et al.The response of biocomponent production of Nannochloris oculata to the combinations of monochromatic light[J].Journal of Ocean University of China, 2022, 21(1):243-251.

    WU H Q, MIAO X L.Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels[J].Bioresource Technology, 2014, 170:421-427.

    SUI Y M, WANG S Y, MOHSEN M, et al.The combined effect of plastic particles size and concentration on rotifers'(Brachionus plicatilis) performance[J].Journal of Ocean University of China, 2022, 21(2):509-519.

    PRICE L L, YIN K, HARRISON P J.Influence of continuous light and L:D cycles on the growth and chemical composition of Prymnesiophyceae including coccolithophores[J].Journal of Experimental Marine Biology and Ecology, 1998, 223(2):223-234.

    KRZEMIŃSKA I, PAWLIK-SKOWROŃSKA B, TRZCIŃSKA M, et al.Influence of photoperiods on the growth rate and biomass productivity of green microalgae[J].Bioprocess and Biosystems Engineering, 2014, 37(4):735-741.

    WANG S, WU S, YANG G P, et al.A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin[J].Biotechnology Advances, 2021, 53:107865.

    GAO B Y, CHEN A L, ZHANG W Y, et al.Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions[J].Journal of Ocean University of China, 2017, 16(5):916-924.

    RAMOS M J, FERNÁNDEZ C M, CASAS A, et al.Influence of fatty acid composition of raw materials on biodiesel properties[J].Bioresource Technology, 2009, 100(1):261-268.

    FRANCISCO Ë C, JACOB-LOPES E, NEVES D B, et al.Microalgae as feedstock for biodiesel production:carbon dioxide sequestration, lipid production and biofuel quality[J].New Biotechnology, 2009, 25:S278-S279.

计量
  • 文章访问数:  762
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2023-06-25

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发