• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1673-9159

主管 广东省高等教育厅

主办 广东海洋大学

不同体质量黄鳍金枪鱼能量代谢相关酶活性与基因表达

2023. 不同体质量黄鳍金枪鱼能量代谢相关酶活性与基因表达. 广东海洋大学学报, 43(6): 72-80. doi: 10.3969/j.issn.1673-9159.2023.06.009
引用本文: 2023. 不同体质量黄鳍金枪鱼能量代谢相关酶活性与基因表达. 广东海洋大学学报, 43(6): 72-80. doi: 10.3969/j.issn.1673-9159.2023.06.009
LI Qian, LI Yu, FU Wenya, XIAO Juan, HUANG Hai, GUO Zhiqiang. 2023. Enzyme Activity and Gene Expression Related to Energy Metabolism of Yellowfin Tuna with Different Body Mass. Journal of Guandong Ocean University, 43(6): 72-80. doi: 10.3969/j.issn.1673-9159.2023.06.009
Citation: LI Qian, LI Yu, FU Wenya, XIAO Juan, HUANG Hai, GUO Zhiqiang. 2023. Enzyme Activity and Gene Expression Related to Energy Metabolism of Yellowfin Tuna with Different Body Mass. Journal of Guandong Ocean University, 43(6): 72-80. doi: 10.3969/j.issn.1673-9159.2023.06.009

不同体质量黄鳍金枪鱼能量代谢相关酶活性与基因表达

  • 基金项目:

    海南热带海洋学院/海南热带海洋学院崖州湾创新研究院开放课题(2022RHDKFKT03)

详细信息
    作者简介:

    李倩(1995-),女,硕士研究生,主要从事鱼类生理学研究。E-mail:21210710000009@hainanu.edu.cn

  • 中图分类号: S917.4

Enzyme Activity and Gene Expression Related to Energy Metabolism of Yellowfin Tuna with Different Body Mass

  • Fund Project: 海南热带海洋学院/海南热带海洋学院崖州湾创新研究院开放课题(2022RHDKFKT03)
  • 【目的】探究不同体质量的黄鳍金枪鱼(Thunnus albacares)红肌和白肌组织之间能量代谢的差异。【方法】测定黄鳍金枪鱼小鱼[(0.85±0.03)kg]、中鱼[(9.77±0.15)kg]和大鱼[(19.63±0.37)kg]红肌和白肌的糖原含量、无氧和有氧代谢关键酶活性及代谢相关基因表达量等指标。【结果】1)红肌糖原含量在大鱼组最高,小鱼组最低(P<0.05),白肌中鱼组的糖原含量最高,且不同体质量组红肌中糖原含量极显著高于白肌(P<0.01)。2)红肌和白肌大鱼组无氧代谢关键酶己糖激酶(HK)、丙酮酸激酶(PK)、乳酸脱氢酶(LDH)和磷酸果糖激酶(PFK)的活性显著高于其余两组(P<0.05),且大鱼组白肌中HK、PK、LDH和PFK活性均显著高于红肌(P<0.05);有氧代谢关键酶柠檬酸合成酶(CS)、琥珀酸脱氢酶(SDH)和苹果酸脱氢酶(MDH)活性在大鱼组显著高于其余两组(P<0.05),且红肌中CS、SDH活性在大鱼组显著高于白肌(P<0.05)。3)有氧和无氧代谢关键酶基因表达结果发现,红肌中hksdhmdh基因表达量差异显著且在大鱼组表达量最高(P<0.05),ldhpk基因表达量无显著差异,cspfk基因的表达量在在中鱼组显著高于其余两组(P<0.05);白肌中不同体质量组sdhmdh基因表达量存在显著差异(P<0.05),hkpkcs基因表达量在中鱼组显著高于其他组(P<0.05),pfk基因表达量差异不显著,ldh基因表达量在大鱼组最高。大鱼组红肌cssdh基因表达量极显著高于白肌(P<0.01),白肌hkpkldh基因表达量分别在中鱼组和大鱼组极显著高于红肌(P<0.01)。4)体质量是影响糖原含量和酶活性的主要因素。【结论】黄鳍金枪鱼红、白肌肉糖原含量,无氧和有氧代谢酶的活性和基因表达受鱼体质量影响。
  • 加载中
  • ZHANG Y Q, MA X T, DAI Z Y.Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (Thunnus albacores)[J].Journal of Food Processing and Preservation, 2019, 43(10):e14111.

    GRAHAM J B, DICKSON K A.Tuna comparative physiology[J].Journal of Experimental Biology, 2004, 207(23):4015-4024.

    KATZ A.A century of exercise physiology:key concepts in regulation of glycogen metabolism in skeletal muscle[J].European Journal of Applied Physiology, 2022, 122(8):1751-1772.

    FANG L, GUO X Z, LIANG X F.First feeding of grass carp (Ctenopharyngodon idellus) with a high-carbohydrate diet:the effect on glucose metabolism in juveniles[J].Aquaculture Reports, 2021, 21:100830.

    BERNAL D, DICKSON K A, SHADWICK R E, et al.Review:analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas[J].Comparative Biochemistry and Physiology Part A:Molecular& Integrative Physiology, 2001, 129(2/3):695-726.

    LAWRENCE DEKONING A B, PICARD D J, BOND S R, et al.Stress and interpopulation variation in glycolytic enzyme activity and expression in a teleost fish Fundulus heteroclitus[J].Physiological and Biochemical Zoology, 2004, 77(1):18-26.

    SCHULTZ E T, CONOVER D O.The allometry of energy reserve depletion:test of a mechanism for size-dependent winter mortality[J].Oecologia, 1999, 119(4):474-483.

    CHUROVA M V, MESHCHERYAKOVA O V, VESELOV A E, et al.Activity of enzymes involved in the energy and carbohydrate metabolism and the level of some moleculargenetic characteristics in young salmons (Salmo salar L.)with different age and weight[J].Russian Journal of Developmental Biology, 2015, 46(5):254-262.

    VORNANEN M, ASIKAINEN J, HAVERINEN J.Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp (Carassius carassius L.)[J].Naturwissenschaften, 2011, 98(3):225-232.

    EGAN B, ZIERATH J R.Exercise metabolism and the molecular regulation of skeletal muscle adaptation[J].Cell Metabolism, 2013, 17(2):162-184.

    FRONTERA W R, OCHALA J.Skeletal muscle:a brief review of structure and function[J].Calcified Tissue International, 2015, 96(3):183-195.

    COUGHLIN D J.Aerobic muscle function during steady swimming in fish[J].Fish and Fisheries, 2002, 3(2):63-78.

    SHIBATA M, MEKUCHI M, MORI K, et al.Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod[J].Bioscience, Biotechnology, and Biochemistry, 2016, 80(6):1114-1124.

    GAO K L, WANG Z C, ZHOU X X, et al.Comparative transcriptome analysis of fast twitch muscle and slow twitch muscle in Takifugu rubripes[J].Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2017, 24:79-88.

    WU M P, CHANG N C, CHUNG C L, et al.Analysis of titin in red and white muscles:crucial role on muscle contractions using a fish model[J].BioMed Research International, 2018, 2018:5816875.

    DASHTY M.A quick look at biochemistry:carbohydrate metabolism[J].Clinical Biochemistry, 2013, 46(15):1339-1352.

    BAO T, HAN H, LI B, et al.The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses[J].Comparative Biochemistry and Physiology.Part D:Genomics and proteomics, 2020, 33:100649.

    ENES P, PANSERAT S, KAUSHIK S, et al.Nutritional regulation of hepatic glucose metabolism in fish[J].Fish Physiology and Biochemistry, 2009, 35(3):519-539.

    SHAKUR AHAMMAD A K, ASADUZZAMAN M, ASAKAWA S, et al.Regulation of gene expression mediating indeterminate muscle growth in teleosts[J].Mechanisms of Development, 2015, 137:53-65.

    WU P, CHEN L, CHENG J, et al.The miRNA expression profile directly reflects the energy metabolic differences between slow and fast muscle with nutritional regulation of the Chinese perch (Siniperca chuatsi)[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2021, 259:111003.

    LEMOINE C M R, CRAIG P M, DHEKNEY K, et al.Temporal and spatial patterns of gene expression in skeletal muscles in response to swim training in adult zebrafish(Danio rerio)[J].Journal of Comparative Physiology B, 2010, 180(1):151-160.

    JENSEN T E, RICHTER E A.Regulation of glucose and glycogen metabolism during and after exercise[J].The Journal of Physiology, 2012, 590(5):1069-1076.

    BERMAN Y, NORTH K N.A gene for speed:the emerging role of alpha-actinin-3 in muscle metabolism[J].Physiology, 2010, 25(4):250-259.

    DAVIES R, MOYES C D.Allometric scaling in centrarchid fish:origins of intra-and inter-specific variation in oxidative and glycolytic enzyme levels in muscle[J].Journal of Experimental Biology, 2007, 210(21):3798-3804.

    CHUROVA M V, MESHCHERYAKOVA O V, VESELOV A E, et al.Activity of metabolic enzymes and musclespecific gene expression in parr and smolts Atlantic salmon Salmo salar L.of different age groups[J].Fish Physiology and Biochemistry, 2017, 43(4):1117-1130.

    MARTÍNEZ M, DUTIL J D, GUDERLEY H.Longitudinal and allometric variation in indicators of muscle metabolic capacities in Atlantic cod (Gadus morrhua)[J].The Journal of Experimental Zoology, 2000, 287(1):38-45.

    MOYES C D, LEMOINE C M R.Control of muscle bioenergetic gene expression:implications for allometric scaling relationships of glycolytic and oxidative enzymes[J].Journal of Experimental Biology, 2005, 208(9):1601-1610.

    REES B B, ANDACHT T, SKRIPNIKOVA E, et al.Population proteomics:quantitative variation within and among populations in cardiac protein expression[J].Molecular Biology and Evolution, 2011, 28(3):1271-1279.

    BURNESS G P, LEARY S C, HOCHACHKA P W, et al.Allometric scaling of RNA, DNA, and enzyme levels:an intraspecific study[J].American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1999, 277(4):R1164-R1170.

    GREENBAUM D, COLANGELO C, WILLIAMS K, et al.Comparing protein abundance and mRNA expression levels on a genomic scale[J].Genome Biology, 2003, 4(9):117.

    TORRES J J, GRIGSBY M D, CLARKE M E.Aerobic and anaerobic metabolism in oxygen minimum layer fishes:the role of alcohol dehydrogenase[J].Journal of Experimental Biology, 2012, 215(11):1905-1914.

    COUTURE P, DUTIL J D, GUDERLEY H.Biochemical correlates of growth and condition in juvenile Atlantic cod(Gadus morhua) from Newfoundland[J].Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55(7):1591-1598.

    DICKSON K A, JOHNSON N M, DONLEY J M, et al.Ontogenetic changes in characteristics required for endothermy in juvenile black skipjack tuna (Euthynnus lineatus)[J].Journal of Experimental Biology, 2000, 203(20):3077-3087.

    MALIK A, DICKSON K A, KITAGAWA T, et al.Scaling of locomotor muscle oxidative and glycolytic metabolic enzymes during the ontogeny of regional endothermy in Pacific bluefin tuna (Thunnus orientalis)[J].Marine Biology, 2021, 168(8):130.

    DALZIEL A C, MOORE S E, MOYES C D.Mitochondrial enzyme content in the muscles of high-performance fish:evolution and variation among fiber types[J].American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2005, 288(1):R163-R172.

    MAHFOUZ M E, HEGAZI M M, EL-MAGD M A, et al.Metabolic and molecular responses in Nile Tilapia, Oreochromis niloticusduring short and prolonged hypoxia[J].Marine and Freshwater Behaviour and Physiology, 2015, 48(5):319-340.

计量
  • 文章访问数:  156
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2023-07-26

目录