• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1673-9159

主管 广东省高等教育厅

主办 广东海洋大学

饲料磷脂水平对乌鳢幼鱼生长性能、抗氧化能力及脂肪沉积的影响

2023. 饲料磷脂水平对乌鳢幼鱼生长性能、抗氧化能力及脂肪沉积的影响. 广东海洋大学学报, 43(6): 9-18. doi: 10.3969/j.issn.1673-9159.2023.06.002
引用本文: 2023. 饲料磷脂水平对乌鳢幼鱼生长性能、抗氧化能力及脂肪沉积的影响. 广东海洋大学学报, 43(6): 9-18. doi: 10.3969/j.issn.1673-9159.2023.06.002
ZHANG Yu, GONG Ye, LI Wenfei, WANG Zhenjie, CHEN Naisong, LI Songlin. 2023. Effects of Dietary Phospholipid Level on Growth Performance, Antioxidant Capacity and Fat Deposition of Juvenile Snakehead (Channa argus). Journal of Guandong Ocean University, 43(6): 9-18. doi: 10.3969/j.issn.1673-9159.2023.06.002
Citation: ZHANG Yu, GONG Ye, LI Wenfei, WANG Zhenjie, CHEN Naisong, LI Songlin. 2023. Effects of Dietary Phospholipid Level on Growth Performance, Antioxidant Capacity and Fat Deposition of Juvenile Snakehead (Channa argus). Journal of Guandong Ocean University, 43(6): 9-18. doi: 10.3969/j.issn.1673-9159.2023.06.002

饲料磷脂水平对乌鳢幼鱼生长性能、抗氧化能力及脂肪沉积的影响

  • 基金项目:

    国家现代农业产业技术体系项目(CARS-46)

详细信息
    作者简介:

    张玉(1998-),男,硕士研究生,研究方向为水产动物营养与饲料。E-mail:849316939@qq.com

  • 中图分类号: S963.73

Effects of Dietary Phospholipid Level on Growth Performance, Antioxidant Capacity and Fat Deposition of Juvenile Snakehead (Channa argus)

  • Fund Project: 国家现代农业产业技术体系项目(CARS-46)
  • 【目的】探究饲料磷脂水平对乌鳢(Channa argus)幼鱼生长性能、抗氧化能力、脂肪酸组成和脂质代谢的影响,为乌鳢健康养殖提供参考。【方法】在基础配合饲料中分别添加质量分数0、2%、4%、6%和8%的磷脂,配制5种等氮等脂饲料(分别记为PL0、PL2、PL4、PL6和PL8),饲喂初始体质量为(3.99±0.01)g的乌鳢幼鱼43 d,测定其生长指标、生理生化指标及肝脏脂代谢相关基因表达量。【结果】1)饲料中磷脂的添加显著影响乌鳢幼鱼的生长性能,PL4组和PL6组幼鱼终末体质量和特定生长率均显著高于PL0组(P<0.05)。日摄食率和饲料系数均呈先降后升的变化趋势,PL4组日摄食率最小,PL6组饲料系数最小,且两者均显著低于PL0组(P<0.05);PL8组幼鱼脏体比显著低于其他各组(P<0.05)。2)随着饲料磷脂水平的升高,乌鳢全鱼和肝脏的粗脂肪含量显著降低,而其水分则呈现出相反的趋势(P<0.05)。3)随着饲料磷脂水平的提高,乌鳢幼鱼肝脏中丙二醛含量呈现降低趋势,PL6组和PL8组显著低于其他组(P<0.05);超氧化物歧化酶活力升高,PL8组显著高于其他组(P<0.05);总抗氧化能力先增高后降低,PL2组显著高于除PL6组以外的其他组(P<0.05);过氧化氢酶活力则不受饲料中磷脂含量变化的影响(P>0.05)。4)在饲料中添加磷脂显著提高幼鱼鱼体和肝脏的n-3多不饱和脂肪酸(PUFA)含量(P<0.05)。5)磷脂的添加对肝脏脂肪代谢相关基因表达有显著影响,PL8组幼鱼的脂肪生成相关基因acc1的表达量显著低于PL0组(P<0.05);PL4和PL6组幼鱼的脂肪分解相关基因mgl表达量显著高于PL0组(P<0.05),PL6组幼鱼的hsl表达量显著高于PL0组(P<0.05);PL6组幼鱼的脂肪酸氧化相关基因pparαcpt1aco的表达量显著高于PL0组(P<0.05)。【结论】在饲料中添加磷脂可显著提高乌鳢幼鱼的生长性能,提高其抗氧化能力,并可通过调节脂质代谢显著降低肝脏脂质沉积。乌鳢幼鱼对饲料中磷脂的最适需求量为5.36%。
  • 加载中
  • BUANG Y, WANG Y M, CHA J Y, et al.Dietary phosphatidylcholine alleviates fatty liver induced by orotic acid[J].Nutrition, 2005, 21(7/8):867-873.

    FENG L, CHEN Y P, JIANG W D, et al.Modulation of immune response, physical barrier and related signaling factors in the gills of juvenile grass carp (Ctenopharyngodon idella) fed supplemented diet with phospholipids[J].Fish & Shellfish Immunology, 2016, 48:79-93.

    TOCHER D R, BENDIKSEN E Å, CAMPBELL P J, et al.The role of phospholipids in nutrition and metabolism of teleost fish[J].Aquaculture, 2008, 280(1/2/3/4):21-34.

    TURCHINI G M, FRANCIS D S, DU, Z Y, et al.The lipids, in Fish Nutrition[M].Fourth Edition//HARDY R W, KAUSHIK S J.New York:Academic Press, 2022:303-467.

    CAHU C L, GISBERT E, VILLENEUVE L A N, et al.Influence of dietary phospholipids on early ontogenesis of fish[J].Aquaculture Research, 2009, 40(9):989-999.

    COUTTEAU P, GEURDEN I, CAMARA M R, et al.Review on the dietary effects of phospholipids in fish and crustacean larviculture[J].Aquaculture, 1997, 155(1/2/3/4):149-164.

    HAMZA N, MHETLI M, BEN KHEMIS I, et al.Effect of dietary phospholipid levels on performance, enzyme activities and fatty acid composition of pikeperch (Sander lucioperca)larvae[J].Aquaculture, 2008, 275(1/2/3/4):274-282.

    ZHAO J Z, AI Q H, MAI K S, et al.Effects of dietary phospholipids on survival, growth, digestive enzymes and stress resistance of large yellow croaker, Larmichthys crocea larvae[J].Aquaculture, 2013, 410/411:122-128.

    HUANG Y, XU J M, SHENG Z Y, et al.Integrated response of growth performance, fatty acid composition, antioxidant responses and lipid metabolism to dietary phospholipids in hybrid grouper(Epinephelus fuscoguttatus ♀×E. lanceolatus ♂)larvae[J].Aquaculture, 2021, 541:736728.

    WANG S L, HAN Z H, TURCHINI G M, et al.Effects of dietary phospholipids on growth performance, digestive enzymes activity and intestinal health of largemouth bass(Micropterus salmoides) larvae[J].Frontiers in Immunology, 2022, 12:827946.

    HAN T, LI X Y, WANG J T, et al.Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica[J].Aquaculture, 2014, 434:145-150.

    SABZI E, MOHAMMADIAZARM H, SALATI A P.Effect of dietary l-carnitine and lipid levels on growth performance, blood biochemical parameters and antioxidant status in juvenile common carp (Cyprinus carpio)[J].Aquaculture, 2017, 480:89-93.

    GUO J L, ZHOU Y L, ZHAO H, et al.Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides[J].Aquaculture, 2019, 506:394-400.

    ZHOU Y L, GUO J L, TANG R J, et al.High dietary lipid level alters the growth, hepatic metabolism enzyme, and antioxidative capacity in juvenile largemouth bass Micropterus salmoides[J].Fish Physiology and Biochemistry, 2020, 46(1):125-134.

    CAI Z N, MAI K S, AI Q H.Regulation of hepatic lipid deposition by phospholipid in large yellow croaker[J].British Journal of Nutrition, 2017, 118(12):999-1009.

    FENG S H, CAI Z N, ZUO R T, et al.Effects of dietary phospholipids on growth performance and expression of key genes involved in phosphatidylcholine metabolism in larval and juvenile large yellow croaker, Larimichthys crocea[J].Aquaculture, 2017, 469:59-66.

    LIN S M, LI F J, YUANGSOI B, et al.Effect of dietary phospholipid levels on growth, lipid metabolism, and antioxidative status of juvenile hybrid snakehead (Channa argus × Channa maculata)[J].Fish Physiology and Biochemistry, 2018, 44(1):401-410.

    TIAN J, WEN H, LU X, et al.Dietary phosphatidylcholine impacts on growth performance and lipid metabolism in adult Genetically Improved Farmed Tilapia (GIFT) strain of Nile Tilapia Oreochromis niloticus[J].British Journal of Nutrition, 2018, 119(1):12-21.

    UYAN O, KOSHIO S, ISHIKAWA M, et al.The influence of dietary phospholipid level on the performances of juvenile amberjack, Seriola dumerili, fed non-fishmeal diets[J].Aquaculture Nutrition, 2009, 15(5):550-557.

    SINK T D, LOCHMANN R T.The effects of soybean lecithin supplementation to a practical diet formulation on juvenile channel catfish, Ictalurus punctatus:growth, survival, hematology, innate immune activity, and lipid biochemistry[J].Journal of the World Aquaculture Society, 2014, 45(2):163-172.

    HUANG Y, XU J M, SHENG Z Y, et al.Effects of dietary phospholipids on growth performance, fatty acid composition, and expression of lipid metabolism related genes of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀×E. lancolatus ♂)[J].Aquaculture Reports, 2022, 22:100993.

    SAGADA G, CHEN J M, SHEN B Q, et al.Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus)[J].Animal Nutrition, 2017, 3(2):156-163.

    TIAN J X, HAN G H, LI Y, et al.Effects of resveratrol on growth, antioxidative status and immune response of snakehead fish (Channa argus)[J].Aquaculture Nutrition, 2021, 27(5):1472-1481.

    DING X Q, NIE X Z, YUAN C C, et al.Effects of dietary multienzyme complex supplementation on growth performance, digestive capacity, histomorphology, blood metabolites and hepatic glycometabolism in snakehead(Channa argus)[J].Animals, 2022, 12(3):380.

    CARMONA-ANTOÑANZAS G, TAYLOR J F, MARTINEZRUBIO L, et al.Molecular mechanism of dietary phospholipid requirement of Atlantic salmon, Salmo salar, fry[J].Biochimica et Biophysica Acta (BBA):Molecular and Cell Biology of Lipids, 2015, 1851(11):1428-1441.

    CHEN Y P, JIANG W D, LIU Y, et al.Exogenous phospholipids supplementation improves growth and modulates immune response and physical barrier referring to NF-κB, TOR, MLCK and Nrf2 signaling factors in the intestine of juvenile grass carp (Ctenopharyngodon idella)[J].Fish & Shellfish Immunology, 2015, 47(1):46-62.

    DAPRÀ F, GEURDEN I, CORRAZE G, et al.Physiological and molecular responses to dietary phospholipids vary between fry and early juvenile stages of rainbow trout(Oncorhynchus mykiss)[J].Aquaculture, 2011, 319(3/4):377-384.

    TAYLOR J F, MARTINEZ-RUBIO L, DEL POZO J, et al.Influence of dietary phospholipid on early development and performance of Atlantic salmon (Salmo salar)[J].Aquaculture, 2015, 448:262-272.

    UYAN O, KOSHIO S, ISHIKAWA M, et al.Effects of dietary phosphorus and phospholipid level on growth, and phosphorus deficiency signs in juvenile Japanese flounder, Paralichthys olivaceus[J].Aquaculture, 2007, 267(1/2/3/4):44-54.

    LI Y, GAO J, HUANG S Q.Effects of different dietary phospholipid levels on growth performance, fatty acid composition, PPAR gene expressions and antioxidant responses of blunt snout bream Megalobrama amblycephala fingerlings[J].Fish Physiology and Biochemistry, 2015, 41(2):423-436.

    NIU J, LIU Y J, TIAN L X, et al.Effects of dietary phospholipid level in cobia (Rachycentron canadum) larvae:growth, survival, plasma lipids and enzymes of lipid metabolism[J].Fish Physiology and Biochemistry, 2008, 34(1):9-17.

    YAN J, LIAO K, WANG T J, et al.Dietary lipid levels influence lipid deposition in the liver of large yellow croaker (Larimichthys crocea) by regulating lipoprotein receptors, fatty acid uptake and triacylglycerol synthesis and catabolism at the transcriptional level[J].PLoS One, 2015, 10(6):e0129937.

    WANG S L, ZHANG Y, XIE R T, et al.Effects of dietary phospholipids on growth performance, fatty acid composition and lipid metabolism of early juvenile largemouth bass(Micropterus salmoides)[J].Aquaculture Research, 2022, 53(16):5628-5637.

    JOBLING M.Nutrient partitioning and the influence of feed composition on body composition[J].Food Intake in Fish, 2001, 25(4):354-375.

    MONROIG O, TOCHER D R, CASTRO L F C.Polyunsaturated fatty acid biosynthesis and metabolism in fish, in polyunsaturated fatty acid metabolism[M]//BURDGE G C.Urbana, State of Ohio:AOCS Press, 2018:31-60.

    JI H, LI J, LIU P.Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2011, 159(1):49-56.

    TODORČEVIĆ M, KJÆR M A, DJAKOVIĆ N, et al.N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2009, 152(2):135-143.

计量
  • 文章访问数:  280
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2023-09-08

目录