首页 >  广东海洋大学学报 >  风浪夹角对浮式风机水动力及发电效率的影响

2023, 43(2): 120-126. doi: 10.3969/j.issn.1673-9159.2023.02.015

风浪夹角对浮式风机水动力及发电效率的影响

江苏科技大学船舶与海洋工程学院, 江苏 镇江 212003

收稿日期:2022-09-22

基金项目:   国家自然科学基金资助项目(51809126); 江苏省自然科学基金资助项目(BK20181468) 

关键词: 半潜式浮式风机基础 , 耦合分析 , 水动力性能 , 动态响应 , 风机发电效率

Effects of Wind and Wave Angles on Hydrodynamic Performance and Power-generating Efficiency of Floating Fan

School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Received Date:2022-09-22

Keywords: semi-submersible floating fan foundation , coupling analysis , hydrodynamics , dynamic response , fan power-generating efficiency

【目的】研究不共线风浪对于浮式风机基础水动力性能的影响。【方法】利用OrcaFlex软件搭建10 MW风力机、半潜式浮式风机基础和系泊系统的全耦合模型,针对不同风浪夹角下的浮式风机进行数值模拟。【结果与结论】风向角变化对浮式风机基础运动影响较大,浪流角度的变化对风力机运动影响较小。风向角由0°变化到30°、60°、90°,风机发电效率分别降低11.61%、58.27%、81.69%;浪流角由0°变化到30°、60°、90°,风机发电效率分别降低0.23%、0.69%、0.91%,表明风向角变化会导致浮式风机发电效率明显减弱。

【Objective】To study the influence of non-collinear wind and wave on the hydrodynamic performance of floating fan foundation. 【Method】OrcaFlex software is used to build a fully coupled model of 10 MW wind turbine, semi-submersible floating fan foundation and mooring system; numerical simulation of floating fans under different wind and wave angles is carried out. 【Result and Conclusion】 The change of wind direction has great influence on the movement of floating fan foundation, and the change of wave and flow angle has little influence on the movement response of wind turbine. When the wind angle changes from 0° to 30° , 60° and 90° , the power generation efficiency of the fan decreases by 11.61%, 58.27% and 81.69%, respectively;When the wave angle and flow angle change from 0° to 30°, 60° and 90°, the power-generating efficiency of the fan decreases by 0.23%, 0.69% and 0.91% respectively. It shows that the change of wind angle will weaken the power generation efficiency of floating fan obviously.

参考文献

[1] 兰涌森,王文玲,张浩,等.风浪作用下新型格构式基础耦合动力响应分析[J].能源与节能, 2021(1):2-9.
[2] 李境伟.半潜式浮式基础动力响应及总体强度分析[D].镇江:江苏科技大学, 2021.
[3] ANTONUTTI R, PEYRARD C, JOHANNING L, et al. The effects of wind-induced inclination on the dynamics of semi-submersible floating wind turbines in the time domain[J]. Renewable Energy, 2016, 88:83-94.
[4] PHILIPPE M, BABARIT A, FERRANT P. Modes of response of an offshore wind turbine with directional wind and waves[J]. Renewable Energy, 2013, 49:151-155.
[5] BACHYNSKI E E, KVITTEM M I, LUAN C Y, et al. Wind-wave misalignment effects on floating wind turbines:motions and tower load effects[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4):041902.
[6] 唐友刚,桂龙,曹菡,等.海上风机半潜式基础概念设计与水动力性能分析[J].哈尔滨工程大学学报, 2014, 35(11):1314-1319.
[7] 曲晓奇,唐友刚,李焱,等.风浪异向时单点系泊浮式风力机运动性能分析[J].哈尔滨工程大学学报, 2018, 39(8):1328-1336.
[8] 邓露,吴松熊,钟文杰,等.风浪夹角变化对海上浮式风机系泊的影响[J].土木工程与管理学报, 2018, 35(1):1-6.
[9] YU W, MÜLLER K, LEMMER F. Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50 m[R]. Venice Italy:LIFES50+Report Meeting, 2018.
[10] GALVÁN J, SÁNCHEZ-LARA M J, MENDIKOA I, et al. NAUTILUS-DTU10 MW floating offshore wind turbine at gulf of Maine:public numerical models of an actively ballasted semisubmersible[J]. Journal of Physics:Conference Series, 2018, 1102:012015.
[11] 张礼贤.风浪联合作用下新型半潜浮式风机全耦合数值分析[D].大连:大连理工大学, 2019.
[12] COULLING A J, GOUPEE A J, ROBERTSON A N, et al. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data[J]. Journal of Renewable and Sustainable Energy, 2013, 5(2):023116.
[13] COULLING A J, GOUPEE A J, ROBERTSON A N, et al. Importance of second-order difference-frequency wavediffraction forces in the validation of a fast semi-submersible floating wind turbine model[C]//American Society of Mechanical Engineers. Proceedings of the ASME 201332nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France:American Society of Mechanical Engineers, 2013:10308.
[14] 郑崇伟,周林.近10年南海波候特征分析及波浪能研究[J].太阳能学报, 2012, 33(8):1349-1356.
[15] 匡晓峰,赵战华,王智峰,等.南海风浪环境统计特性分析方法研究[J].中国造船, 2018, 59(1):99-109.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

风浪夹角对浮式风机水动力及发电效率的影响