2023, 43(2): 104-112. doi: 10.3969/j.issn.1673-9159.2023.02.013
关键词: 水产品 , 氨基糖苷类药物 , 药物残留检测 , 超高效液相色谱-串联质谱
Keywords: aquatic products , aminoglycosides , simultaneous determination , ultra performance liquid chromatography-tandem mass spectrometry
【目的】建立同时检测水产品中壮观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素、新霉素等10种氨基糖苷类药物的超高效液相色谱-串联质谱(UPLC-MS/MS)方法。【方法】样品用10 mmol/L磷酸二氢钾缓冲溶液提取,用氢氧化钠溶液将提取液的pH调为6.6~7.0,取一半体积提取液上HLB固相萃取柱净化,采用Obelisc R柱高效分离,电喷雾正离子多反应监测模式监测。【结果与结论】10种氨基糖苷类药物呈现良好的线性关系(R2> 0.999),新霉素的检出限和定量限分别为5.0、10.0 μg/kg,潮霉素B和安普霉素的检出限和定量限分别为2.0、5.0 μg/kg,其余7种氨基糖苷类药物的检出限和定量限分别为1.0 μg/kg和2.0 μg/kg。10种分析物的加标回收率为74.8%~104.5%,相对标准偏差(RSD)为4.5%~12.6%。本方法分析时间短,5 min内即完成10种药物的分离,分析物峰形尖锐。方法灵敏度、准确度高,适用于水产品中10种氨基糖苷类药物的同时测定。
【目的】建立同时检测水产品中壮观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素、新霉素等10种氨基糖苷类药物的超高效液相色谱-串联质谱(UPLC-MS/MS)方法。【方法】样品用10 mmol/L磷酸二氢钾缓冲溶液提取,用氢氧化钠溶液将提取液的pH调为6.6~7.0,取一半体积提取液上HLB固相萃取柱净化,采用Obelisc R柱高效分离,电喷雾正离子多反应监测模式监测。【结果与结论】10种氨基糖苷类药物呈现良好的线性关系(R2> 0.999),新霉素的检出限和定量限分别为5.0、10.0 μg/kg,潮霉素B和安普霉素的检出限和定量限分别为2.0、5.0 μg/kg,其余7种氨基糖苷类药物的检出限和定量限分别为1.0 μg/kg和2.0 μg/kg。10种分析物的加标回收率为74.8%~104.5%,相对标准偏差(RSD)为4.5%~12.6%。本方法分析时间短,5 min内即完成10种药物的分离,分析物峰形尖锐。方法灵敏度、准确度高,适用于水产品中10种氨基糖苷类药物的同时测定。
[1] | FOSTER J II, TEKIN M. Aminoglycoside induced ototoxicity associated with mitochondrial DNA mutations[J]. Egyptian Journal of Medical Human Genetics, 2016, 17(3):287-293. |
[2] | 徐丽佳,刘笑,张秀芹,等.超高效液相色谱串联质谱法检测鸡蛋中残留的氨基糖苷类药物[J].药物分析杂志, 2016, 36(2):301-305. |
[3] | FAROUK F, AZZAZY H M E, NIESSEN W M A. Challenges in the determination of aminoglycoside antibiotics, a review[J]. Analytica Chimica Acta, 2015, 890:21-43. |
[4] | CAI Y Q, CAI Y E, CHENG J, et al. Comparative study on the analytical performance of three waveforms for the determination of several aminoglycoside antibiotics with high performance liquid chromatography using amperometric detection[J]. Journal of Chromatography A, 2005, 1085(1):124-130. |
[5] | European Commission. Commission regulation (EU) No. 37/2010 of 22 December 2009:on pharmacologically active substances and their classification regarding maximum residue limits in food stuffs of animal origin[R]. Official Journal of the European Union, 2010:1-72. |
[6] | 中华人民共和国农业农村部,国家卫生健康委员会,国家市场监督管理总局.食品安全国家标准食品中兽药最大残留限量:GB 31650-2019[S].北京:中国标准出版社, 2019. |
[7] | LOSOYA-LEAL A, ESTEVEZ M C, MARTÍNEZ-CHAPA S O, et al. Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin[J]. Talanta, 2015, 141:253-258. |
[8] | WANG S, XU B, ZHANG Y, et al. Development of enzyme-linked immunosorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney[J]. Meat Science, 2009, 82(1):53-58. |
[9] | YANG B X, WANG L, LUO C Y, et al. Simultaneous determination of 11 aminoglycoside residues in honey, milk, and pork by liquid chromatography with tandem mass spectrometry and molecularly imprinted polymer solid phase extraction[J]. Journal of AOAC International, 2017, 100(6):1869-1878. |
[10] | JIANG Y, HE M Y, ZHANG W J, et al. Recent advances of capillary electrophoresis-mass spectrometry instrumentation and methodology[J]. Chinese Chemical Letters, 2017, 28(8):1640-1652. |
[11] | MUKHTAR N H, MAMAT N A, SEE H H. Monitoring of tobramycin in human plasma via mixed matrix membrane extraction prior to capillary electrophoresis with contactless conductivity detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158:184-188. |
[12] | PAUL P, SÄNGER-VAN DE GRIEND C, ADAMS E, et al. Recent advances in the capillary electrophoresis analysis of antibiotics with capacitively coupled contactless conductivity detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158:405-415. |
[13] | YU Y, LIU Y, WANG W T, et al. Highly sensitive determination of aminoglycoside residues in food by sheathless CE-ESI-MS/MS[J]. Analytical Methods, 2019, 11(39):5064-5069. |
[14] | ZHANG L, PENG J D, TANG J X, et al. Description and validation of coupling high performance liquid chromatography with resonance Rayleigh scattering in aminoglycosides determination[J]. Analytica Chimica Acta, 2011, 706(2):199-204. |
[15] | IANNI F, PUCCIARINI L, CAROTTI A, et al. Hydrophilic interaction liquid chromatography of aminoglycoside antibiotics with a diol-type stationary phase[J]. Analytica Chimica Acta, 2018, 1044:174-180. |
[16] | KAUFMANN A, BUTCHER P, MADEN K. Determination of aminoglycoside residues by liquid chromatography and tandem mass spectrometry in a variety of matrices[J]. Analytica Chimica Acta, 2012, 711:46-53. |
[17] | YOUNG M S, VAN TRAN K, GOH E, et al. A rapid SPEbased analytical method for UPLC/MS/MS determination of aminoglycoside antibiotic residues in bovine milk, muscle, and kidney[J]. Journal of AOAC International, 2014, 97(6):1737-1741. |
[18] | ARSAND J B, JANK L, MARTINS M T, et al. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry[J]. Talanta, 2016, 154:38-45. |
[19] | MORENO-GONZÁLEZ D, HAMED A M, GARCÍACAMPAÑA A M, et al. Evaluation of hydrophilic interaction liquid chromatography-tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods[J]. Talanta, 2017, 171:74-80. |
[20] | KIM Y R, KANG H S. Multi-residue determination of twenty aminoglycoside antibiotics in various food matrices by dispersive solid phase extraction and liquid chromatography-tandem mass spectrometry[J]. Food Control, 2021, 130:108374. |
[21] | 刘雪红,张秀芹,侯颖,等.超高效液相色谱-串联质谱法检测牛奶中7种氨基糖苷类药物残留[J].中国兽药杂志, 2015, 49(3):48-52. |
[22] | WANG Y, LI S H, ZHANG F F, et al. Study of matrix effects for liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk[J]. Journal of Chromatography A, 2016, 1437:8-14. |
[23] | FENG J N, SHE X J, HE X Y, et al. Synthesis of magnetic graphene/mesoporous silica composites with boronic acidfunctionalized pore-walls for selective and efficient residue analysis of aminoglycosides in milk[J]. Food Chemistry, 2018, 239:612-621. |
[24] | YUE F L, LI H, KONG Q Q, et al. Selection of broadspectrum aptamer and its application in fabrication of aptasensor for detection of aminoglycoside antibiotics residues in milk[J]. Sensors and Actuators B:Chemical, 2022, 351:130959. |
[25] | 魏莉莉,薛霞,武传香,等.混合型离子交换液相色谱-串联质谱法检测鸡蛋中10种氨基糖苷类药物残留[J].色谱, 2021, 39(12):1374-1381. |
[26] | WU Q, ABU BAKR SHABBIR M, PENG D P, et al. Microbiological inhibition-based method for screening and identifying of antibiotic residues in milk, chicken egg and honey[J]. Food Chemistry, 2021, 363:130074. |
[27] | TAO Y F, CHEN D M, YU H, et al. Simultaneous determination of 15 aminoglycoside (s) residues in animal derived foods by automated solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2012, 135(2):676-683. |
[28] | SALUTI G, DIAMANTI I, GIUSEPPONI D, et al. Simultaneous determination of aminoglycosides and colistins in food[J]. Food Chemistry, 2018, 266:9-16. |
[29] | LI D, LI T F, WANG L, et al. A polyvinyl alcohol-coated core-shell magnetic nanoparticle for the extraction of aminoglycoside antibiotics residues from honey samples[J]. Journal of Chromatography A, 2018, 1581/1582:1-7. |
[30] | WANG X R, YANG S P, LI Y, et al. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly[J]. Journal of Chromatography A, 2018, 1542:28-36. |
[31] | WU D, LIU P, FAN W J, et al. Design of green coating material of combining rigid and flexible properties for the extraction of aminoglycosides residues[J]. Journal of Chromatography A, 2021, 1641:462006. |
[32] | 黄原飞,娄晓祎,周哲,等.分子印迹聚合物固相萃取-超高效液相色谱-串联质谱法检测水产品中11种氨基糖苷类药物残留[J].分析化学, 2018, 46(3):454-461. |
[33] | GLINKA M, WOJNOWSKI W, WASIK A. Determination of aminoglycoside antibiotics:current status and future trends[J]. Trends in Analytical Chemistry, 2020, 131:116034. |
[34] | JANDERA P. Stationary and mobile phases in hydrophilic interaction chromatography:a review[J]. Analytica Chimica Acta, 2011, 692(1/2):1-25. |
[35] | ZHOU G S, PANG H Q, TANG Y P, et al. Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HILIC-UPLC-TQ-MS/MS) in multiple-reaction monitoring (MRM) for the determination of nucleobases and nucleosides in ginkgo seeds[J]. Food Chemistry, 2014, 150:260-266. |
[36] | HUA W Y, IERARDI T, LESSLIE M, et al. Development and validation of a HILIC-MS/MS method for quantification of decitabine in human plasma by using lithium adduct detection[J]. Journal of Chromatography B, 2014, 969:117-122. |
[37] | KUMAR P, RUBIES A, COMPANYÓ R, et al. Hydrophilic interaction chromatography for the analysis of aminoglycosides[J]. Journal of Separation Science, 2012, 35(4):498-504. |
[38] | 肖志明,王钦钦,尤艳莉,等.超高效液相色谱-串联质谱法测定饲料中9种氨基糖苷类抗生素[J].食品安全质量检测学报, 2021, 12(19):7563-7571. |
[1] | 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022 |