• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1673-9159

主管 广东省高等教育厅

主办 广东海洋大学

pH值对罗非鱼肌球蛋白乳化性的影响

张若兰 周春霞 洪鹏志 刘唤明 刘璐 马焕塔 黄晓冰

上一篇

下一篇

张若兰, 周春霞, 洪鹏志, 刘唤明, 刘璐, 马焕塔, 黄晓冰. 2023. pH值对罗非鱼肌球蛋白乳化性的影响. 广东海洋大学学报, 43(2): 95-103. doi: 10.3969/j.issn.1673-9159.2023.02.012
引用本文: 张若兰, 周春霞, 洪鹏志, 刘唤明, 刘璐, 马焕塔, 黄晓冰. 2023. pH值对罗非鱼肌球蛋白乳化性的影响. 广东海洋大学学报, 43(2): 95-103. doi: 10.3969/j.issn.1673-9159.2023.02.012
ZHANG Ruo-lan, ZHOU Chun-xia, HONG Peng-zhi, LIU Huan-ming, LIU Lu, MA Huan-ta, HUANG Xiao-bing. 2023. Effects of pH on the Emulsifying Properties of Tilapia (Oreochromis niloticus) Myosin. Journal of Guandong Ocean University, 43(2): 95-103. doi: 10.3969/j.issn.1673-9159.2023.02.012
Citation: ZHANG Ruo-lan, ZHOU Chun-xia, HONG Peng-zhi, LIU Huan-ming, LIU Lu, MA Huan-ta, HUANG Xiao-bing. 2023. Effects of pH on the Emulsifying Properties of Tilapia (Oreochromis niloticus) Myosin. Journal of Guandong Ocean University, 43(2): 95-103. doi: 10.3969/j.issn.1673-9159.2023.02.012

pH值对罗非鱼肌球蛋白乳化性的影响

  • 基金项目:

    广东省现代农业产业技术体系创新团队建设项目 (2021KJ150); 湛江市海洋经济创新发展示范市建设项目 (XM-202008-01B1)

详细信息
    作者简介:

    张若兰(1997-),女,硕士研究生,研究方向为水产品加工与贮藏。E-mail:763667675@qq.com

  • 中图分类号: TS254.1

Effects of pH on the Emulsifying Properties of Tilapia (Oreochromis niloticus) Myosin

  • Fund Project: 广东省现代农业产业技术体系创新团队建设项目 (2021KJ150); 湛江市海洋经济创新发展示范市建设项目 (XM-202008-01B1)
  • 【目的】探讨pH值对肌球蛋白乳化稳定性及界面蛋白组成和结构的影响。【方法】设定2.0、5.0、7.0、11.0等4种pH值,通过pH偏移法探究其对罗非鱼(Oreochromis niloticus)肌球蛋白乳化性的影响,采用高压均质法制备罗非鱼肌球蛋白-大豆油乳液,分析不同pH值条件下罗非鱼肌球蛋白乳液的稳定性、界面蛋白组成及分子结构的变化。【结果】pH为5.0时,肌球蛋白的乳化性最差,乳液粒径最大(P < 0.05),Zeta-电位绝对值最小(P < 0.05),界面蛋白α-螺旋含量最低,无规则卷曲含量最多,乳液在贮藏期内明显分层。调节pH值至2.0、7.0和11.0时,肌球蛋白的乳化活性与乳化稳定性增强,乳液贮藏7 d未分层。电泳结果显示,乳液体系中界面蛋白主要由肌球蛋白重链组成,pH 2.0和5.0时蛋白在界面发生交联聚集,而pH 7.0和11.0时蛋白在界面聚集少,与未经处理的肌球蛋白相比,乳液及界面吸附状态肌球蛋白的二级结构发生明显变化,α-螺旋含量减少(P<0.05)。比较而言,pH 11.0条件下,肌球蛋白乳液粒径最小(P < 0.05),界面蛋白分子结构部分展开,与油滴相互作用增强,肌球蛋白的乳化性最好。【结论】pH值的变化能诱导肌球蛋白分子结构及界面特性的改变,从而改善肌球蛋白的乳化性能。
  • 加载中
  • WANG J Y, LI Z Y, ZHENG B D, et al. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream (Nemipterus virgatus) myosin[J]. LWT, 2019, 100:381-390.

    LI L Y, CAI R Y, WANG P, et al. Manipulating interfacial behavior and emulsifying properties of myosin through alkali-heat treatment[J]. Food Hydrocolloids, 2018, 85:69-74.

    LI L X, CHEN L, NING C, et al. L-Arginine and L-Lysine improve the physical stability of soybean oil-myosin emulsions by changing penetration and unfolding behaviors of interfacial myosin[J]. Food Hydrocolloids, 2020, 98:105265.

    HUANG Y J, ZHANG D J, ZHANG Y Y, et al. Role of ultrasound and L-lysine/L-argnine in improving the physical stability of myosin-soybean oil emulsion[J]. Food Hydrocolloids, 2021, 111:106367.

    WEI L, CAO L W, XIONG S B, et al. Effects of pH on self-assembly of silver carp myosin at low temperature[J]. Food Bioscience, 2019, 30:100420.

    KRISTINSSON H G, HULTIN H O. Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding[J]. Journal of Agricultural and Food Chemistry, 2003, 51(24):7187-7196.

    YANG Z Y, SUN J, LI Z, et al. Robustness of protein:using pH shifting and low speed shearing to partially recover conformation and dispersibility of myosin from pale, soft, exudative (PSE)-like chicken breast[J]. LWT, 2021, 138:110786.

    SHI T, LIU H, SONG T, et al. Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion[J]. Food Chemistry, 2021, 342:128314.

    REN Z Y, CUI Y Q, WANG Y Q, et al. Effect of ionic strength on the structural properties and emulsion characteristics of myofibrillar proteins from hairtail (Trichiurus haumela)[J]. Food Research International, 2022, 157:111248.

    MA W C, WANG J M, XU X B, et al. Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion[J]. Food Research International, 2019, 121:247-256.

    LIN L, XIONG Y L, et al. Competitive adsorption and dilatational rheology of pork myofibrillar and sarcoplasmic proteins at the O/W emulsion interface[J]. Food Hydrocolloids, 2021, 118:106816.

    LI K, FU L, ZHAO Y Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids, 2020, 98:105275.

    WU J, XU F, WU Y, et al. Characterization and analysis of an oil-in-water emulsion stabilized by rapeseed protein isolate under pH and ionic stress[J]. Journal of the Science of Food and Agriculture, 2020, 100(13):4734-4744.

    MA J, CHEN H, CHEN W, et al. Effects of heat treatment and pH on the physicochemical and emulsifying properties of coconut (Cocos nucifera L.) globulins[J]. Food Chemistry, 2022, 388:133031.

    LI Y, YU H X, CAI Y, et al. Ferulic acid-β-cyclodextrin inclusion complexes:application on the preservation of hairtail (Trichiurus lepturus)[J]. International Journal of Food Properties, 2020, 23(1):282-296.

    LI L, WANG P, WU C, et al. Inhibition of heat-induced flocculation of myosin-based emulsions through steric repulsion by conformational adaptation-enhanced interfacial protein with an alkaline pH-shifting-driven method[J]. Langmuir, 2018, 34(30):8848-8856.

    LIU H T, ZHANG J N, WANG H, et al. High-intensity ultrasound improves the physical stability of myofibrillar protein emulsion at low ionic strength by destroying and suppressing myosin molecular assembly[J]. Ultrasonics Sonochemistry, 2021, 74:105554.

    WANG W N, WANG R Y, YAO J, et al. Effect of ultrasonic power on the emulsion stability of rice bran protein-chlorogenic acid emulsion[J]. Ultrasonics Sonochemistry, 2022, 84:105959.

    SUN S, ZHANG C H, LI S H, et al. Improving emulsifying properties using mixed natural emulsifiers:tea saponin and golden pompano protein[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 656:130311.

    SUN S, ZHANG C H, LI S H, et al. Influence of nano complexation with curcumin on emulsifying properties and emulsion oxidative stability of soy protein isolate at pH 3.0 and 7.0[J]. Food Hydrocolloids, 2016, 61:102-112.

    PATIL U, BENJAKUL S. Characteristics of albumin and globulin from coconut meat and their role in emulsion stability without and with proteolysis[J]. Food Hydrocolloids, 2017, 69:220-228.

    LU Y Y, PAN D D, XIA Q, et al. Impact of pH-dependent succinylation on the structural features and emulsifying properties of chicken liver protein[J]. Food Chemistry, 2021, 358:129868.

    BAI Y, ZENG X M, ZHANG C, et al. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism[J]. LWT, 2021, 146:111397.

    SUN L C, LIN Y C, LIU W F, et al. Effect of pH shifting on conformation and gelation properties of myosin from skeletal muscle of blue round scads (Decapterus maruadsi)[J]. Food Hydrocolloids, 2019, 93:137-145.

    ZHANG Y M, DONG M, ZHANG X Y, et al. Effects of inulin on the gel properties and molecular structure of porcine myosin:a underlying mechanisms study[J]. Food Hydrocolloids, 2020, 108:105974.

    LIU R, ZHAO S M, LIU Y M, et al. Effect of pH on the gel properties and secondary structure of fish myosin[J]. Food Chemistry, 2010, 121(1):196-202.

    HAN Z Y, LI X X, LIU Y B, et al. The evolution of pork myosin aggregates and the relationship between aggregation modes and microstructures of O/W emulsions[J]. Food Hydrocolloids, 2021, 119:106825.

计量
  • 文章访问数:  763
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2022-09-18

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发