首页 >  广东海洋大学学报 >  南大洋中尺度涡活动的季节变化

2023, 43(2): 67-76. doi: 10.3969/j.issn.1673-9159.2023.02.009

南大洋中尺度涡活动的季节变化

1. 广东海洋大学海洋与气象学院/近海海洋变化与灾害预警实验室, 广东 湛江 524088;

2. 广东海洋大学/广东省高等学校陆架及深远海气候、资源与环境重点实验室, 广东 湛江 524088;

3. 自然资源部空间海洋遥感与应用重点实验室, 北京 100081

收稿日期:2022-09-25

基金项目:   广东省普通高校创新团队项目 (2019KCXTF021); 广东省冲一流专项资金项目 (080507032201, 080503032101, 231420003);自然资源部海洋环境信息保障技术重点实验室开放基金课题 (2019); 广东海洋大学科研启动经费资助项目 (R18023, R19061) 

关键词: 中尺度涡 , 季节变化 , 涡旋活动 , 南大洋 , 涡动能

Seasonal Variation of Mesoscale Eddy Activity in the Southern Ocean

1. Laboratory for Coastal Ocean Variation and Disaster Prediction/College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China;

2. Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province/Guangdong Ocean University, Zhanjiang 524088, China;

3. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China

Received Date:2022-09-25

Keywords: mesoscale eddies , seasonal variation , eddy activity , the Southern Ocean , eddy kinetic energy

摘要

【目的】了解南大洋中尺度涡的活动规律。【方法】利用AVISO提供的1993—2020年中尺度涡轨迹数据集META3.2DT,通过合成分析和能量分析,探讨南大洋寿命为30 d以上中尺度涡出现数(EON)的季节变化及动力机制。【结果和结论】南大洋EON存在显著季节变化,即夏季多(2月达到最大值)春季少(9月达到最小值),且与涡动能季节变化紧密相关。涡旋的振幅、转速和强度呈现出与EON大致相反的季节变化,即春季大夏季小。合成分析表明,风场的季节变化引起“涡旋消亡”强度的变化,进而影响EON季节变化。能量分析表明,EON季节变化受正压不稳定的调控。

【目的】了解南大洋中尺度涡的活动规律。【方法】利用AVISO提供的1993—2020年中尺度涡轨迹数据集META3.2DT,通过合成分析和能量分析,探讨南大洋寿命为30 d以上中尺度涡出现数(EON)的季节变化及动力机制。【结果和结论】南大洋EON存在显著季节变化,即夏季多(2月达到最大值)春季少(9月达到最小值),且与涡动能季节变化紧密相关。涡旋的振幅、转速和强度呈现出与EON大致相反的季节变化,即春季大夏季小。合成分析表明,风场的季节变化引起“涡旋消亡”强度的变化,进而影响EON季节变化。能量分析表明,EON季节变化受正压不稳定的调控。

参考文献

[1] DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5:3294.
[2] GRIFFIES S M, WINTON M, ANDERSON W G, et al. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models[J]. Journal of Climate, 2015, 28(3):952-977.
[3] JAYNE S R, MAROTZKE J. The oceanic eddy heat transport[J]. Journal of Physical Oceanography, 2002, 32(12):3328-3345.
[4] ZHANG Z, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194):322-324.
[5] FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8):608-612.
[6] MA X H, CHANG P, SARAVANAN R, et al. Distant influence of kuroshio eddies on north Pacific weather patterns?[J]. Scientific Reports, 2015, 5:17785.
[7] O'NEILL L W, CHELTON D B, ESBENSEN S K. Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales[J]. Journal of Climate, 2003, 16(14):2340-2354.
[8] SMALL R J, DESZOEKE S P, XIE S P, et al. Air-sea interaction over ocean fronts and eddies[J]. Dynamics of Atmospheres and Oceans, 2008, 45(3/4):274-319.
[9] SABU P, GEORGE J V, ANILKUMAR N, et al. Observations of watermass modification by mesoscale eddies in the subtropical frontal region of the Indian Ocean sector of southern ocean[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 118:152-161.
[10] FRENGER I, MÜNNICH M, GRUBER N, et al. Southern Ocean eddy phenomenology[J]. Journal of Geophysical Research:Oceans, 2015, 120(11):7413-7449.
[11] HOGG A M, MEREDITH M P, CHAMBERS D P, et al. Recent trends in the Southern Ocean eddy field[J]. Journal of Geophysical Research:Oceans, 2015, 120(1):257-267.
[12] LEACH H, STRASS V. Cyclonic eddies and upper thermocline fine-scale structures in the Antarctic Circumpolar Current[J]. Ocean Dynamics, 2019, 69(2):157-173.
[13] DUAN Y L, LIU H W, YU W D, et al. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11):28-34.
[14] THOMPSON D W, SOLOMON S. Interpretation of recent Southern Hemisphere climate change[J]. Science, 2002, 296(5569):895-899.
[15] MAYEWSKI P A, MEREDITH M P, SUMMERHAYES C P, et al. State of the Antarctic and Southern Ocean climate system[J]. Reviews of Geophysics, 2009, 47:RG1003.
[16] WANG Z M, ZHANG X D, GUAN Z Y, et al. An atmospheric origin of the multi-decadal bipolar seesaw[J]. Scientific Reports, 2015, 5:8909.
[17] MORROW R, WARD M L, HOGG A M, et al. Eddy response to Southern Ocean climate modes[J]. Journal of Geophysical Research-Oceans, 2010, 115(C10):C10030.
[18] CAI Y Q, CHEN D K, MAZLOFF M R, et al. Topographic modulation of the wind stress impact on eddy activity in the southern ocean[J]. Geophysical Research Letters, 2022, 49(13):2022GL097859.
[19] HOGG A M C, MEREDITH M P, BLUNDELL J R, et al. Eddy heat flux in the southern ocean:response to variable wind forcing[J]. Journal of Climate, 2008, 21(4):608-620.
[20] WU Y, WANG Z M, LIU C Y. On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies[J]. Journal of Geophysical Research-Oceans, 2017, 122(3):2465-2493.
[21] MEREDITH M P, HOGG A M. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode[J]. Geophysical Research Letters, 2006, 33(16):2006GL026499.
[22] 张文霞,孟祥凤.南极绕极流区中尺度涡动动能年际变化和转换机制[J].极地研究, 2011, 23(1):42-48.
[23] ZHAI X M. The annual cycle of surface eddy kinetic energy and its influence on eddy momentum fluxes as inferred from altimeter data[J]. Satellite Oceanography and Meteorology, 2017, 2(2):299.
[24] 常景龙,邱云,林新宇,等.孟加拉湾中尺度涡的总体特征与季节变化[J].应用海洋学学报, 2019, 38(2):149-158.
[25] 祖永灿,方越,高晓倩,等.北太平洋中尺度涡季节和年际变化的统计分析[J].海洋科学进展, 2016, 34(2):197-206.
[26] DING M R, LIN P F, LIU H L, et al. Increased eddy activity in the northeastern Pacific during 1993-2011[J]. Journal of Climate, 2018, 31(1):387-399.
[27] TUO P F, YU J Y, HU J Y. The changing influences of ENSO and the Pacific meridional mode on mesoscale eddies in the South China Sea[J]. Journal of Climate, 2019, 32(3):685-700.
[28] PEGLIASCO C, DELEPOULLE A, MASON E, et al. META3.1exp:a new global mesoscale eddy trajectory atlas derived from altimetry[J]. Earth System Science Data, 2022, 14(3):1087-1107.
[29] SCREEN J A, GILLETT N P, STEVENS D P, et al. The role of eddies in the Southern Ocean temperature response to the southern annular mode[J]. Journal of Climate, 2009, 22(3):806-818.
[30] MASON E, PASCUAL A, MCWILLIAMS J C. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5):1181-1188.
[31] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216.
[32] HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 monthly averaged data on single levels from 1979 to present[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019, 10:252-266.
[33] SERVICE CCC. ERA5:Fifth generation of ECMWF atmospheric reanalyses of the global climate[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2017, 15(2):2020.
[34] CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):2007gl030812.
[35] XU C, ZHAI X M, SHANG X D. Work done by atmospheric winds on mesoscale ocean eddies[J]. Geophysical Research Letters, 2016, 43(23):12174-12180.
[36] RAI S, HECHT M, MALTRUD M, et al. Scale of oceanic eddy killing by wind from global satellite observations[J]. Science Advances, 2021, 7(28):eabf4920.
[37] GILL A E, GREEN J S A, SIMMONS A J. Energy partition in the large-scale ocean circulation and the production of midocean eddies[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(7):499-528.
[38] FRANKIGNOUL C, MÜLLER P. Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere[J]. Journal of Physical Oceanography, 1979, 9(1):104-127.
[39] RICHARDSON P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. Journal of Geophysical Research, 1983, 88(C7):4355.
[40] QIU B, CHEN S M, KESSLER W S. Source of the 70-day mesoscale eddy variability in the coral sea and the north Fiji Basin[J]. Journal of Physical Oceanography, 2009, 39(2):404-420.
[41] YANG Y, SAN LIANG X. The instabilities and multiscale energetics underlying the Mean-interannual-eddy interactions in the kuroshio extension region[J]. Journal of Physical Oceanography, 2016, 46(5):1477-1494.
[42] YANG Y, SAN LIANG X, QIU B, et al. On the decadal variability of the eddy kinetic energy in the kuroshio extension[J]. Journal of Physical Oceanography, 2017, 47(5):1169-1187.
[43] YOUNGS M K, THOMPSON A F, LAZAR A, et al. ACC meanders, energy transfer, and mixed barotropic-baroclinic instability[J]. Journal of Physical Oceanography, 2017, 47(6):1291-1305.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

南大洋中尺度涡活动的季节变化