• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1673-9159

主管 广东省高等教育厅

主办 广东海洋大学

南大洋中尺度涡活动的季节变化

刘婷甄 郑少军 严厉

上一篇

下一篇

刘婷甄, 郑少军, 严厉. 2023. 南大洋中尺度涡活动的季节变化. 广东海洋大学学报, 43(2): 67-76. doi: 10.3969/j.issn.1673-9159.2023.02.009
引用本文: 刘婷甄, 郑少军, 严厉. 2023. 南大洋中尺度涡活动的季节变化. 广东海洋大学学报, 43(2): 67-76. doi: 10.3969/j.issn.1673-9159.2023.02.009
LIU Ting-zhen, ZHENG Shao-jun, YAN Li. 2023. Seasonal Variation of Mesoscale Eddy Activity in the Southern Ocean. Journal of Guandong Ocean University, 43(2): 67-76. doi: 10.3969/j.issn.1673-9159.2023.02.009
Citation: LIU Ting-zhen, ZHENG Shao-jun, YAN Li. 2023. Seasonal Variation of Mesoscale Eddy Activity in the Southern Ocean. Journal of Guandong Ocean University, 43(2): 67-76. doi: 10.3969/j.issn.1673-9159.2023.02.009

南大洋中尺度涡活动的季节变化

  • 基金项目:

    广东省普通高校创新团队项目 (2019KCXTF021); 广东省冲一流专项资金项目 (080507032201, 080503032101, 231420003);自然资源部海洋环境信息保障技术重点实验室开放基金课题 (2019); 广东海洋大学科研启动经费资助项目 (R18023, R19061)

详细信息
    作者简介:

    刘婷甄(1998-),女,硕士研究生,研究方向为物理海洋。E-mail:2112002014@stu.gdou.edu.cn

  • 中图分类号: P728.1

Seasonal Variation of Mesoscale Eddy Activity in the Southern Ocean

  • Fund Project: 广东省普通高校创新团队项目 (2019KCXTF021); 广东省冲一流专项资金项目 (080507032201, 080503032101, 231420003);自然资源部海洋环境信息保障技术重点实验室开放基金课题 (2019); 广东海洋大学科研启动经费资助项目 (R18023, R19061)
  • 【目的】了解南大洋中尺度涡的活动规律。【方法】利用AVISO提供的1993—2020年中尺度涡轨迹数据集META3.2DT,通过合成分析和能量分析,探讨南大洋寿命为30 d以上中尺度涡出现数(EON)的季节变化及动力机制。【结果和结论】南大洋EON存在显著季节变化,即夏季多(2月达到最大值)春季少(9月达到最小值),且与涡动能季节变化紧密相关。涡旋的振幅、转速和强度呈现出与EON大致相反的季节变化,即春季大夏季小。合成分析表明,风场的季节变化引起“涡旋消亡”强度的变化,进而影响EON季节变化。能量分析表明,EON季节变化受正压不稳定的调控。
  • 加载中
  • DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5:3294.

    GRIFFIES S M, WINTON M, ANDERSON W G, et al. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models[J]. Journal of Climate, 2015, 28(3):952-977.

    JAYNE S R, MAROTZKE J. The oceanic eddy heat transport[J]. Journal of Physical Oceanography, 2002, 32(12):3328-3345.

    ZHANG Z, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194):322-324.

    FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8):608-612.

    MA X H, CHANG P, SARAVANAN R, et al. Distant influence of kuroshio eddies on north Pacific weather patterns?[J]. Scientific Reports, 2015, 5:17785.

    O'NEILL L W, CHELTON D B, ESBENSEN S K. Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales[J]. Journal of Climate, 2003, 16(14):2340-2354.

    SMALL R J, DESZOEKE S P, XIE S P, et al. Air-sea interaction over ocean fronts and eddies[J]. Dynamics of Atmospheres and Oceans, 2008, 45(3/4):274-319.

    SABU P, GEORGE J V, ANILKUMAR N, et al. Observations of watermass modification by mesoscale eddies in the subtropical frontal region of the Indian Ocean sector of southern ocean[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 118:152-161.

    FRENGER I, MÜNNICH M, GRUBER N, et al. Southern Ocean eddy phenomenology[J]. Journal of Geophysical Research:Oceans, 2015, 120(11):7413-7449.

    HOGG A M, MEREDITH M P, CHAMBERS D P, et al. Recent trends in the Southern Ocean eddy field[J]. Journal of Geophysical Research:Oceans, 2015, 120(1):257-267.

    LEACH H, STRASS V. Cyclonic eddies and upper thermocline fine-scale structures in the Antarctic Circumpolar Current[J]. Ocean Dynamics, 2019, 69(2):157-173.

    DUAN Y L, LIU H W, YU W D, et al. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11):28-34.

    THOMPSON D W, SOLOMON S. Interpretation of recent Southern Hemisphere climate change[J]. Science, 2002, 296(5569):895-899.

    MAYEWSKI P A, MEREDITH M P, SUMMERHAYES C P, et al. State of the Antarctic and Southern Ocean climate system[J]. Reviews of Geophysics, 2009, 47:RG1003.

    WANG Z M, ZHANG X D, GUAN Z Y, et al. An atmospheric origin of the multi-decadal bipolar seesaw[J]. Scientific Reports, 2015, 5:8909.

    MORROW R, WARD M L, HOGG A M, et al. Eddy response to Southern Ocean climate modes[J]. Journal of Geophysical Research-Oceans, 2010, 115(C10):C10030.

    CAI Y Q, CHEN D K, MAZLOFF M R, et al. Topographic modulation of the wind stress impact on eddy activity in the southern ocean[J]. Geophysical Research Letters, 2022, 49(13):2022GL097859.

    HOGG A M C, MEREDITH M P, BLUNDELL J R, et al. Eddy heat flux in the southern ocean:response to variable wind forcing[J]. Journal of Climate, 2008, 21(4):608-620.

    WU Y, WANG Z M, LIU C Y. On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies[J]. Journal of Geophysical Research-Oceans, 2017, 122(3):2465-2493.

    MEREDITH M P, HOGG A M. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode[J]. Geophysical Research Letters, 2006, 33(16):2006GL026499.

    ZHAI X M. The annual cycle of surface eddy kinetic energy and its influence on eddy momentum fluxes as inferred from altimeter data[J]. Satellite Oceanography and Meteorology, 2017, 2(2):299.

    DING M R, LIN P F, LIU H L, et al. Increased eddy activity in the northeastern Pacific during 1993-2011[J]. Journal of Climate, 2018, 31(1):387-399.

    TUO P F, YU J Y, HU J Y. The changing influences of ENSO and the Pacific meridional mode on mesoscale eddies in the South China Sea[J]. Journal of Climate, 2019, 32(3):685-700.

    PEGLIASCO C, DELEPOULLE A, MASON E, et al. META3.1exp:a new global mesoscale eddy trajectory atlas derived from altimetry[J]. Earth System Science Data, 2022, 14(3):1087-1107.

    SCREEN J A, GILLETT N P, STEVENS D P, et al. The role of eddies in the Southern Ocean temperature response to the southern annular mode[J]. Journal of Climate, 2009, 22(3):806-818.

    MASON E, PASCUAL A, MCWILLIAMS J C. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5):1181-1188.

    CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216.

    HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 monthly averaged data on single levels from 1979 to present[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019, 10:252-266.

    SERVICE CCC. ERA5:Fifth generation of ECMWF atmospheric reanalyses of the global climate[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2017, 15(2):2020.

    CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):2007gl030812.

    XU C, ZHAI X M, SHANG X D. Work done by atmospheric winds on mesoscale ocean eddies[J]. Geophysical Research Letters, 2016, 43(23):12174-12180.

    RAI S, HECHT M, MALTRUD M, et al. Scale of oceanic eddy killing by wind from global satellite observations[J]. Science Advances, 2021, 7(28):eabf4920.

    GILL A E, GREEN J S A, SIMMONS A J. Energy partition in the large-scale ocean circulation and the production of midocean eddies[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(7):499-528.

    FRANKIGNOUL C, MÜLLER P. Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere[J]. Journal of Physical Oceanography, 1979, 9(1):104-127.

    RICHARDSON P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. Journal of Geophysical Research, 1983, 88(C7):4355.

    QIU B, CHEN S M, KESSLER W S. Source of the 70-day mesoscale eddy variability in the coral sea and the north Fiji Basin[J]. Journal of Physical Oceanography, 2009, 39(2):404-420.

    YANG Y, SAN LIANG X. The instabilities and multiscale energetics underlying the Mean-interannual-eddy interactions in the kuroshio extension region[J]. Journal of Physical Oceanography, 2016, 46(5):1477-1494.

    YANG Y, SAN LIANG X, QIU B, et al. On the decadal variability of the eddy kinetic energy in the kuroshio extension[J]. Journal of Physical Oceanography, 2017, 47(5):1169-1187.

    YOUNGS M K, THOMPSON A F, LAZAR A, et al. ACC meanders, energy transfer, and mixed barotropic-baroclinic instability[J]. Journal of Physical Oceanography, 2017, 47(6):1291-1305.

计量
  • 文章访问数:  806
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2022-09-25

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发