Seasonal Variation of Mesoscale Eddy Activity in the Southern Ocean
-
摘要: 【目的】了解南大洋中尺度涡的活动规律。【方法】利用AVISO提供的1993—2020年中尺度涡轨迹数据集META3.2DT,通过合成分析和能量分析,探讨南大洋寿命为30 d以上中尺度涡出现数(EON)的季节变化及动力机制。【结果和结论】南大洋EON存在显著季节变化,即夏季多(2月达到最大值)春季少(9月达到最小值),且与涡动能季节变化紧密相关。涡旋的振幅、转速和强度呈现出与EON大致相反的季节变化,即春季大夏季小。合成分析表明,风场的季节变化引起“涡旋消亡”强度的变化,进而影响EON季节变化。能量分析表明,EON季节变化受正压不稳定的调控。Abstract: 【Objective】The seasonal variation of mesoscale eddy and its associated dynamic mechanism in the Southern Ocean (SO) were studied.【Method】Based on the mesoscale eddy trajectory dataset META3.2DT during 1993―2020 provided by AVISO, the seasonal variation and its associated dynamic mechanism of eddy occurrence number (EON) with eddy lifespan longer than 30 d in the SO are discussed through composite analysis and energetics analysis.【Result and Conclusion】EON in the SO exhibits obvious seasonal variation, big in summer (with maximum in February) and small in Spring (with minimum in September). The seasonal variation of EON is closely related to that of eddy kinetic energy (EKE), which is strong in summer and weak in winter. Moreover, the amplitude, rotational speed and intensity of the eddies show a seasonal variation pattern opposite to that of the EON, i.e., larger in spring and smaller in summer. Composite analysis shows that the seasonal variation of wind influences the speed of "eddy killing", and affects the seasonal variation of the EON. Energetics analysis shows that the seasonal variation of EON is also modulated by the barotropic instability.
-
Key words:
- mesoscale eddies /
- seasonal variation /
- eddy activity /
- the Southern Ocean /
- eddy kinetic energy
-
DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5:3294.
GRIFFIES S M, WINTON M, ANDERSON W G, et al. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models[J]. Journal of Climate, 2015, 28(3):952-977.
JAYNE S R, MAROTZKE J. The oceanic eddy heat transport[J]. Journal of Physical Oceanography, 2002, 32(12):3328-3345.
ZHANG Z, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194):322-324.
FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8):608-612.
MA X H, CHANG P, SARAVANAN R, et al. Distant influence of kuroshio eddies on north Pacific weather patterns?[J]. Scientific Reports, 2015, 5:17785.
O'NEILL L W, CHELTON D B, ESBENSEN S K. Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales[J]. Journal of Climate, 2003, 16(14):2340-2354.
SMALL R J, DESZOEKE S P, XIE S P, et al. Air-sea interaction over ocean fronts and eddies[J]. Dynamics of Atmospheres and Oceans, 2008, 45(3/4):274-319.
SABU P, GEORGE J V, ANILKUMAR N, et al. Observations of watermass modification by mesoscale eddies in the subtropical frontal region of the Indian Ocean sector of southern ocean[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 118:152-161.
FRENGER I, MÜNNICH M, GRUBER N, et al. Southern Ocean eddy phenomenology[J]. Journal of Geophysical Research:Oceans, 2015, 120(11):7413-7449.
HOGG A M, MEREDITH M P, CHAMBERS D P, et al. Recent trends in the Southern Ocean eddy field[J]. Journal of Geophysical Research:Oceans, 2015, 120(1):257-267.
LEACH H, STRASS V. Cyclonic eddies and upper thermocline fine-scale structures in the Antarctic Circumpolar Current[J]. Ocean Dynamics, 2019, 69(2):157-173.
DUAN Y L, LIU H W, YU W D, et al. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11):28-34.
THOMPSON D W, SOLOMON S. Interpretation of recent Southern Hemisphere climate change[J]. Science, 2002, 296(5569):895-899.
MAYEWSKI P A, MEREDITH M P, SUMMERHAYES C P, et al. State of the Antarctic and Southern Ocean climate system[J]. Reviews of Geophysics, 2009, 47:RG1003.
WANG Z M, ZHANG X D, GUAN Z Y, et al. An atmospheric origin of the multi-decadal bipolar seesaw[J]. Scientific Reports, 2015, 5:8909.
MORROW R, WARD M L, HOGG A M, et al. Eddy response to Southern Ocean climate modes[J]. Journal of Geophysical Research-Oceans, 2010, 115(C10):C10030.
CAI Y Q, CHEN D K, MAZLOFF M R, et al. Topographic modulation of the wind stress impact on eddy activity in the southern ocean[J]. Geophysical Research Letters, 2022, 49(13):2022GL097859.
HOGG A M C, MEREDITH M P, BLUNDELL J R, et al. Eddy heat flux in the southern ocean:response to variable wind forcing[J]. Journal of Climate, 2008, 21(4):608-620.
WU Y, WANG Z M, LIU C Y. On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies[J]. Journal of Geophysical Research-Oceans, 2017, 122(3):2465-2493.
MEREDITH M P, HOGG A M. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode[J]. Geophysical Research Letters, 2006, 33(16):2006GL026499.
ZHAI X M. The annual cycle of surface eddy kinetic energy and its influence on eddy momentum fluxes as inferred from altimeter data[J]. Satellite Oceanography and Meteorology, 2017, 2(2):299.
DING M R, LIN P F, LIU H L, et al. Increased eddy activity in the northeastern Pacific during 1993-2011[J]. Journal of Climate, 2018, 31(1):387-399.
TUO P F, YU J Y, HU J Y. The changing influences of ENSO and the Pacific meridional mode on mesoscale eddies in the South China Sea[J]. Journal of Climate, 2019, 32(3):685-700.
PEGLIASCO C, DELEPOULLE A, MASON E, et al. META3.1exp:a new global mesoscale eddy trajectory atlas derived from altimetry[J]. Earth System Science Data, 2022, 14(3):1087-1107.
SCREEN J A, GILLETT N P, STEVENS D P, et al. The role of eddies in the Southern Ocean temperature response to the southern annular mode[J]. Journal of Climate, 2009, 22(3):806-818.
MASON E, PASCUAL A, MCWILLIAMS J C. A new sea surface height-based code for oceanic mesoscale eddy tracking[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5):1181-1188.
CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216.
HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 monthly averaged data on single levels from 1979 to present[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019, 10:252-266.
SERVICE CCC. ERA5:Fifth generation of ECMWF atmospheric reanalyses of the global climate[J]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2017, 15(2):2020.
CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):2007gl030812.
XU C, ZHAI X M, SHANG X D. Work done by atmospheric winds on mesoscale ocean eddies[J]. Geophysical Research Letters, 2016, 43(23):12174-12180.
RAI S, HECHT M, MALTRUD M, et al. Scale of oceanic eddy killing by wind from global satellite observations[J]. Science Advances, 2021, 7(28):eabf4920.
GILL A E, GREEN J S A, SIMMONS A J. Energy partition in the large-scale ocean circulation and the production of midocean eddies[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(7):499-528.
FRANKIGNOUL C, MÜLLER P. Quasi-geostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere[J]. Journal of Physical Oceanography, 1979, 9(1):104-127.
RICHARDSON P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. Journal of Geophysical Research, 1983, 88(C7):4355.
QIU B, CHEN S M, KESSLER W S. Source of the 70-day mesoscale eddy variability in the coral sea and the north Fiji Basin[J]. Journal of Physical Oceanography, 2009, 39(2):404-420.
YANG Y, SAN LIANG X. The instabilities and multiscale energetics underlying the Mean-interannual-eddy interactions in the kuroshio extension region[J]. Journal of Physical Oceanography, 2016, 46(5):1477-1494.
YANG Y, SAN LIANG X, QIU B, et al. On the decadal variability of the eddy kinetic energy in the kuroshio extension[J]. Journal of Physical Oceanography, 2017, 47(5):1169-1187.
YOUNGS M K, THOMPSON A F, LAZAR A, et al. ACC meanders, energy transfer, and mixed barotropic-baroclinic instability[J]. Journal of Physical Oceanography, 2017, 47(6):1291-1305.
计量
- 文章访问数: 806
- PDF下载数: 8
- 施引文献: 0