2023, 43(2): 26-35. doi: 10.3969/j.issn.1673-9159.2023.02.004
关键词: 华贵栉孔扇贝 , 儿茶酚胺 , 循环生理 , 超声成像
Keywords: Chlamys nobilis , catecholamines , circulatory physiology , ultrasound imaging
【目的】探究儿茶酚胺类激素对华贵栉孔扇贝(Chlamys nobilis)循环生理的影响,为贝类应对环境胁迫的生理响应研究提供基础。【方法】将0.2、1.0、2.0 μmol/L的儿茶酚胺类激素(多巴胺、去甲肾上腺素、肾上腺素)注射到华贵栉孔扇贝体内,运用多普勒超声成像技术实时监测扇贝在0、5、20、40、60、180、300 min时的心率、舒张末期速度、收缩峰值速度、血流量等循环生理指标变化情况。【结果】注射0.2 μmol/L的多巴胺和肾上腺素后,扇贝的心率相对变化率与海水对照组之间均无显著差异(P > 0.05),而舒张末期速度、收缩峰值速度、血流量分别在注射后20、40 min显著高于对照组(P < 0.05);注射0.2 μmol/L的去甲肾上腺素后,仅舒张末期速度在注射后5 min显著高于对照组(P < 0.05);注射1.0 μmol/L的儿茶酚胺类激素后,扇贝各循环生理指标的相对变化率平均值在40 min前低于对照组,在60 min时高于对照组;注射2.0 μmol/L的儿茶酚胺类激素后,扇贝各循环生理指标的相对变化率平均值在40 min前均低于对照组且为负值,在180 min时高于海水对照组。【结论】低浓度(0.2 μmol/L)的儿茶酚胺类激素对扇贝的部分循环生理指标起兴奋作用;中、高浓度(1.0、2.0 μmol/L)的儿茶酚胺类激素对扇贝的循环生理指标有先抑制后兴奋的双相调节作用,且浓度越高抑制效果越明显。
【目的】探究儿茶酚胺类激素对华贵栉孔扇贝(Chlamys nobilis)循环生理的影响,为贝类应对环境胁迫的生理响应研究提供基础。【方法】将0.2、1.0、2.0 μmol/L的儿茶酚胺类激素(多巴胺、去甲肾上腺素、肾上腺素)注射到华贵栉孔扇贝体内,运用多普勒超声成像技术实时监测扇贝在0、5、20、40、60、180、300 min时的心率、舒张末期速度、收缩峰值速度、血流量等循环生理指标变化情况。【结果】注射0.2 μmol/L的多巴胺和肾上腺素后,扇贝的心率相对变化率与海水对照组之间均无显著差异(P > 0.05),而舒张末期速度、收缩峰值速度、血流量分别在注射后20、40 min显著高于对照组(P < 0.05);注射0.2 μmol/L的去甲肾上腺素后,仅舒张末期速度在注射后5 min显著高于对照组(P < 0.05);注射1.0 μmol/L的儿茶酚胺类激素后,扇贝各循环生理指标的相对变化率平均值在40 min前低于对照组,在60 min时高于对照组;注射2.0 μmol/L的儿茶酚胺类激素后,扇贝各循环生理指标的相对变化率平均值在40 min前均低于对照组且为负值,在180 min时高于海水对照组。【结论】低浓度(0.2 μmol/L)的儿茶酚胺类激素对扇贝的部分循环生理指标起兴奋作用;中、高浓度(1.0、2.0 μmol/L)的儿茶酚胺类激素对扇贝的循环生理指标有先抑制后兴奋的双相调节作用,且浓度越高抑制效果越明显。
[1] | 孙泽伟,郑怀平,张涛,等.低温和饥饿对华贵栉孔扇贝幼虫生长和存活的影响[J].生态学报, 2010, 30(1):1-6. |
[2] | ZHENG H P, LIU H L, LIU W H, et al. Changes of total carotenoid and lipid content in scallop tissues of Chlamys nobilis (Bivalve:Pectinidae) during gonad maturation[J]. Aquaculture, 2012, 342/343:7-12. |
[3] | 王琦,袁涛,何毛贤.华贵栉孔扇贝养殖及遗传育种研究进展[J].南方水产科学, 2011, 7(5):73-80. |
[4] | 马斌,刘全圣,王伟,等.单胺类及5-羟色胺拮抗剂对海湾扇贝幼虫生长的影响[J].水产科学, 2016, 35(6):620-624. |
[5] | 王玲玲.贝类神经内分泌系统对免疫应答的调节机制[J].大连海洋大学学报, 2022, 37(3):363-375. |
[6] | 张涛,阙华勇,杨红生,等.海湾扇贝幼虫变态过程中体内神经递质含量的变化[J].海洋与湖沼, 2002, 33(3):239-244. |
[7] | LACOSTE A, MALHAM S K, CUEFF A, et al. Noradrenaline modulates hemocyte reactive oxygen species production via β-adrenergic receptors in the oyster Crassostrea gigas[J]. Developmental&Comparative Immunology, 2001, 25(4):285-289. |
[8] | LACOSTE A, MALHAM S K, CUEFF A, et al. Noradrenaline modulates oyster hemocyte phagocytosis via a β-adrenergic receptor-cAMP signaling pathway[J]. General and Comparative Endocrinology, 2001, 122(3):252-259. |
[9] | LE D V, YOUNG T, ALFARO A C, et al. Effect of neuroactive compounds on larval metamorphosis of New Zealand geoduck (Panopea zelandica)[J]. Aquaculture Research, 2017, 48(6):3080-3090. |
[10] | TEH C P, ZULFIGAR Y, TAN S H. Epinephrine and l-DOPA promote larval settlement and metamorphosis of the tropical oyster, Crassostrea iredalei (Faustino, 1932):an oyster hatchery perspective[J]. Aquaculture, 2012, 338:260-263. |
[11] | SMITH J R. A survey of endogenous dopamine and serotonin in ciliated and nervous tissues of five species of marine bivalves, with evidence for specific, high-affinity dopamine receptors in ciliated tissue of Mytilus californianus[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology, 1982, 71(1):57-61. |
[12] | 周智.栉孔扇贝(Chlamys farreri)儿茶酚胺能神经内分泌免疫调节系统的初步研究[D].青岛:中国科学院研究生院(海洋研究所), 2011. |
[13] | 杨秀平.动物生理学[M].北京:高等教育出版社, 2002. 72-82. |
[14] | ELANDER A, IDSTRÖM J P, HOLM S, et al. Metabolic adaptation to reduced muscle blood flow. II. Mechanisms and beneficial effects[J]. The American Journal of Physiology, 1985, 249(1 Pt 1):E70-E76. ELANDER A, IDSTROM J, SCHERSTEN T, et al. Metabolic adaptation to reduced muscle blood flow. I. Enzyme and metabolite alterations[J]. American Journal of Physiology-Endocrinology And Metabolism, 1985, 249(1):E63-E69. |
[15] | IVERSEN N K, DUPONT-PRINET A, FINDORF I, et al. Autonomic regulation of the heart during digestion and aerobic swimming in the European Sea bass (Dicentrarchus labrax)[J]. Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2010, 156(4):463-468. |
[16] | CHEN M Y, YANG H S, XU B, et al. Catecholaminergic responses to environmental stress in the hemolymph of Zhikong scallop Chlamys farreri[J]. Journal of Experimental Zoology Part A, Ecological Genetics and Physiology, 2008, 309(6):289-296. |
[17] | NOVELO N D, TIERSCH T R. A review of the use of ultrasonography in fish reproduction[J]. North American Journal of Aquaculture, 2012, 74(2):169-181. |
[18] | 郝杰华,许强,汝少国,等.使用多普勒超声成像比较栉孔扇贝与虾夷扇贝循环生理特征[J].海洋与湖沼, 2016, 47(1):29-35. |
[19] | HAEFNER JR P A, SHEPPARD B, BARTO J, et al. Application of ultrasound technology to molluscan physiology:Noninvasive monitoring of cardiac rate in the blue mussel, Mytilus edulis Linnaeus, 1758[J]. Journal of Shellfish Research, 1996, 15(3):685-688. |
[20] | CAMACHO-ARROYO I, LÓPEZ-GRIEGO L, MORALESMONTOR J. The role of cytokines in the regulation of neurotransmission[J]. Neuroimmunomodulation, 2009, 16(1):1-12. |
[21] | WEBSTER MARKETON J I, GLASER R. Stress hormones and immune function[J]. Cellular Immunology, 2008, 252(1/2):16-26. |
[22] | KODIROV S A. The neuronal control of cardiac functions in Molluscs[J]. Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2011, 160(2):102-116. |
[23] | 高菲,许强,陈慕雁,等.贝类神经内分泌和免疫系统对环境胁迫的响应[J].海洋科学集刊, 2006(1):131-139. |
[24] | BURNETT N P, SEABRA R, DE PIRRO M, et al. An improved noninvasive method for measuring heartbeat of intertidal animals[J]. Limnology and Oceanography:Methods, 2013, 11(2):91-100. |
[25] | GUIDO C, WILLIAMS GRAY A, GRAY DAVE R. Field and laboratory measurement of heart rate in a tropical limpet, Cellana grata[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(4):749-751. |
[26] | KHOLODKEVICH S V, KUZNETSOVA T V, TRUSEVICH V V, et al. Peculiarities of valve movement and of cardiac activity of the bivalve mollusc Mytilus galloprovincialis at various stress actions[J]. Journal of Evolutionary Biochemistry and Physiology, 2009, 45(4):524-526. |
[27] | WELSH J. Heart, circulation and blood cells[J]. Physiology of Mollusca, 2013, 2:125-174. |
[28] | 李德兴,王一镗.多巴胺对心血管系统的药理及临床应用[J].国外医学资料麻醉与复苏, 1981, 2(1):15-19. |
[29] | 谢菲.多巴胺对家兔肾血流量和肾功能的影响[D].石家庄:河北医科大学, 2007. |
[30] | JONES H D. The circulatory systems of gastropods and bivalves[M]//The Mollusca. Amsterdam:Elsevier, 1983:189-238. |
[31] | NICHOLSON S. Cardiac and branchial physiology associated with copper accumulation and detoxication in the mytilid mussel Perna viridis (L.)[J]. Journal of Experimental Marine Biology and Ecology, 2003, 295(2):157-171. |
[32] | TRUEMAN E R, BLATCHFORD J G, JONES H D, et al. Recordings of the heart rate and activity of molluscs in their natural habitat[J]. Malacologia, 1973, 14(1Á2):377Á-383Á. |
[33] | ROSENGARTEN B, ALDINGER C, KAUFMANN A, et al. Comparison of visually evoked peak systolic and end diastolic blood flow velocity using a control system approach[J]. Ultrasound in Medicine&Biology, 2001, 27(11):1499-1503. |
[34] | CHEN Q K, HE F, FENG X R, et al. Correlation of Doppler parameters with renal pathology:A study of 992 patients[J]. Experimental and Therapeutic Medicine, 2014, 7(2):439-442. |
[35] | HAO Y, SUN C Y, RONG Y, et al. Circulatory and metabolic physiology disorder in different organs of the subtropical scallop species Chlamys nobilis under thermal and hypoxia stress, revealed by Doppler ultrasonography technique[J]. Frontiers in Marine Science, 2022, 9:880112. |
[36] | PITTMAN R N. The circulatory system and oxygen transport[M]//Regulation of Tissue Oxygenation. Morgan&Claypool Life Sciences. San Rafael, Calif:Morgan&Claypool, 2011. |
[37] | NICHOLSON S. Ecophysiological aspects of cardiac activity in the subtropical mussel Perna viridis (L.)(Bivalvia:Mytilidae)[J]. Journal of Experimental Marine Biology and Ecology, 2002, 267(2):207-222. |
[38] | 李倩茗,庞辉,梁桂宁.不同强度运动时大鼠伏隔核多巴胺及其代谢产物的测定[J].广西医科大学学报, 1998, 15(3):50-52. |
[1] | 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022 |