• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1673-9159

主管 广东省高等教育厅

主办 广东海洋大学

儿茶酚胺类激素对华贵栉孔扇贝循环生理的影响

荣云 高菲 王海青 许强 冯博轩 孙春阳 郝雨

上一篇

下一篇

荣云, 高菲, 王海青, 许强, 冯博轩, 孙春阳, 郝雨. 2023. 儿茶酚胺类激素对华贵栉孔扇贝循环生理的影响. 广东海洋大学学报, 43(2): 26-35. doi: 10.3969/j.issn.1673-9159.2023.02.004
引用本文: 荣云, 高菲, 王海青, 许强, 冯博轩, 孙春阳, 郝雨. 2023. 儿茶酚胺类激素对华贵栉孔扇贝循环生理的影响. 广东海洋大学学报, 43(2): 26-35. doi: 10.3969/j.issn.1673-9159.2023.02.004
RONG Yun, GAO Fei, WANG Hai-qing, XU Qiang, FENG Bo-xuan, SUN Chun-yang, HAO Yu. 2023. Effects of Catecholamines on Circulatory Physiology of Chlamys nobilis. Journal of Guandong Ocean University, 43(2): 26-35. doi: 10.3969/j.issn.1673-9159.2023.02.004
Citation: RONG Yun, GAO Fei, WANG Hai-qing, XU Qiang, FENG Bo-xuan, SUN Chun-yang, HAO Yu. 2023. Effects of Catecholamines on Circulatory Physiology of Chlamys nobilis. Journal of Guandong Ocean University, 43(2): 26-35. doi: 10.3969/j.issn.1673-9159.2023.02.004

儿茶酚胺类激素对华贵栉孔扇贝循环生理的影响

  • 基金项目:

    国家自然科学基金 (31760757); 国家重点研发计划 (2019YFD0901304)

详细信息
    作者简介:

    荣云(1993-),女,硕士研究生,主要从事海洋底栖动物生理生态学研究。E-mail:20095134210037@hainanu.edu.cn

  • 中图分类号: Q959.215+.45

Effects of Catecholamines on Circulatory Physiology of Chlamys nobilis

  • Fund Project: 国家自然科学基金 (31760757); 国家重点研发计划 (2019YFD0901304)
  • 【目的】探究儿茶酚胺类激素对华贵栉孔扇贝(Chlamys nobilis)循环生理的影响,为贝类应对环境胁迫的生理响应研究提供基础。【方法】将0.2、1.0、2.0 μmol/L的儿茶酚胺类激素(多巴胺、去甲肾上腺素、肾上腺素)注射到华贵栉孔扇贝体内,运用多普勒超声成像技术实时监测扇贝在0、5、20、40、60、180、300 min时的心率、舒张末期速度、收缩峰值速度、血流量等循环生理指标变化情况。【结果】注射0.2 μmol/L的多巴胺和肾上腺素后,扇贝的心率相对变化率与海水对照组之间均无显著差异(P > 0.05),而舒张末期速度、收缩峰值速度、血流量分别在注射后20、40 min显著高于对照组(P < 0.05);注射0.2 μmol/L的去甲肾上腺素后,仅舒张末期速度在注射后5 min显著高于对照组(P < 0.05);注射1.0 μmol/L的儿茶酚胺类激素后,扇贝各循环生理指标的相对变化率平均值在40 min前低于对照组,在60 min时高于对照组;注射2.0 μmol/L的儿茶酚胺类激素后,扇贝各循环生理指标的相对变化率平均值在40 min前均低于对照组且为负值,在180 min时高于海水对照组。【结论】低浓度(0.2 μmol/L)的儿茶酚胺类激素对扇贝的部分循环生理指标起兴奋作用;中、高浓度(1.0、2.0 μmol/L)的儿茶酚胺类激素对扇贝的循环生理指标有先抑制后兴奋的双相调节作用,且浓度越高抑制效果越明显。
  • 加载中
  • ZHENG H P, LIU H L, LIU W H, et al. Changes of total carotenoid and lipid content in scallop tissues of Chlamys nobilis (Bivalve:Pectinidae) during gonad maturation[J]. Aquaculture, 2012, 342/343:7-12.

    LACOSTE A, MALHAM S K, CUEFF A, et al. Noradrenaline modulates hemocyte reactive oxygen species production via β-adrenergic receptors in the oyster Crassostrea gigas[J]. Developmental&Comparative Immunology, 2001, 25(4):285-289.

    LACOSTE A, MALHAM S K, CUEFF A, et al. Noradrenaline modulates oyster hemocyte phagocytosis via a β-adrenergic receptor-cAMP signaling pathway[J]. General and Comparative Endocrinology, 2001, 122(3):252-259.

    LE D V, YOUNG T, ALFARO A C, et al. Effect of neuroactive compounds on larval metamorphosis of New Zealand geoduck (Panopea zelandica)[J]. Aquaculture Research, 2017, 48(6):3080-3090.

    TEH C P, ZULFIGAR Y, TAN S H. Epinephrine and l-DOPA promote larval settlement and metamorphosis of the tropical oyster, Crassostrea iredalei (Faustino, 1932):an oyster hatchery perspective[J]. Aquaculture, 2012, 338:260-263.

    SMITH J R. A survey of endogenous dopamine and serotonin in ciliated and nervous tissues of five species of marine bivalves, with evidence for specific, high-affinity dopamine receptors in ciliated tissue of Mytilus californianus[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology, 1982, 71(1):57-61.

    ELANDER A, IDSTRÖM J P, HOLM S, et al. Metabolic adaptation to reduced muscle blood flow. II. Mechanisms and beneficial effects[J]. The American Journal of Physiology, 1985, 249(1 Pt 1):E70-E76. ELANDER A, IDSTROM J, SCHERSTEN T, et al. Metabolic adaptation to reduced muscle blood flow. I. Enzyme and metabolite alterations[J]. American Journal of Physiology-Endocrinology And Metabolism, 1985, 249(1):E63-E69.

    IVERSEN N K, DUPONT-PRINET A, FINDORF I, et al. Autonomic regulation of the heart during digestion and aerobic swimming in the European Sea bass (Dicentrarchus labrax)[J]. Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2010, 156(4):463-468.

    CHEN M Y, YANG H S, XU B, et al. Catecholaminergic responses to environmental stress in the hemolymph of Zhikong scallop Chlamys farreri[J]. Journal of Experimental Zoology Part A, Ecological Genetics and Physiology, 2008, 309(6):289-296.

    NOVELO N D, TIERSCH T R. A review of the use of ultrasonography in fish reproduction[J]. North American Journal of Aquaculture, 2012, 74(2):169-181.

    HAEFNER JR P A, SHEPPARD B, BARTO J, et al. Application of ultrasound technology to molluscan physiology:Noninvasive monitoring of cardiac rate in the blue mussel, Mytilus edulis Linnaeus, 1758[J]. Journal of Shellfish Research, 1996, 15(3):685-688.

    CAMACHO-ARROYO I, LÓPEZ-GRIEGO L, MORALESMONTOR J. The role of cytokines in the regulation of neurotransmission[J]. Neuroimmunomodulation, 2009, 16(1):1-12.

    WEBSTER MARKETON J I, GLASER R. Stress hormones and immune function[J]. Cellular Immunology, 2008, 252(1/2):16-26.

    KODIROV S A. The neuronal control of cardiac functions in Molluscs[J]. Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2011, 160(2):102-116.

    BURNETT N P, SEABRA R, DE PIRRO M, et al. An improved noninvasive method for measuring heartbeat of intertidal animals[J]. Limnology and Oceanography:Methods, 2013, 11(2):91-100.

    GUIDO C, WILLIAMS GRAY A, GRAY DAVE R. Field and laboratory measurement of heart rate in a tropical limpet, Cellana grata[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(4):749-751.

    KHOLODKEVICH S V, KUZNETSOVA T V, TRUSEVICH V V, et al. Peculiarities of valve movement and of cardiac activity of the bivalve mollusc Mytilus galloprovincialis at various stress actions[J]. Journal of Evolutionary Biochemistry and Physiology, 2009, 45(4):524-526.

    WELSH J. Heart, circulation and blood cells[J]. Physiology of Mollusca, 2013, 2:125-174.

    JONES H D. The circulatory systems of gastropods and bivalves[M]//The Mollusca. Amsterdam:Elsevier, 1983:189-238.

    NICHOLSON S. Cardiac and branchial physiology associated with copper accumulation and detoxication in the mytilid mussel Perna viridis (L.)[J]. Journal of Experimental Marine Biology and Ecology, 2003, 295(2):157-171.

    TRUEMAN E R, BLATCHFORD J G, JONES H D, et al. Recordings of the heart rate and activity of molluscs in their natural habitat[J]. Malacologia, 1973, 14(1Á2):377Á-383Á.

    ROSENGARTEN B, ALDINGER C, KAUFMANN A, et al. Comparison of visually evoked peak systolic and end diastolic blood flow velocity using a control system approach[J]. Ultrasound in Medicine&Biology, 2001, 27(11):1499-1503.

    CHEN Q K, HE F, FENG X R, et al. Correlation of Doppler parameters with renal pathology:A study of 992 patients[J]. Experimental and Therapeutic Medicine, 2014, 7(2):439-442.

    HAO Y, SUN C Y, RONG Y, et al. Circulatory and metabolic physiology disorder in different organs of the subtropical scallop species Chlamys nobilis under thermal and hypoxia stress, revealed by Doppler ultrasonography technique[J]. Frontiers in Marine Science, 2022, 9:880112.

    PITTMAN R N. The circulatory system and oxygen transport[M]//Regulation of Tissue Oxygenation. Morgan&Claypool Life Sciences. San Rafael, Calif:Morgan&Claypool, 2011.

    NICHOLSON S. Ecophysiological aspects of cardiac activity in the subtropical mussel Perna viridis (L.)(Bivalvia:Mytilidae)[J]. Journal of Experimental Marine Biology and Ecology, 2002, 267(2):207-222.

计量
  • 文章访问数:  782
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2022-11-29

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发