首页 >  广东海洋大学学报 >  基于特征注意力机制的RNN-Bi-LSTM船舶轨迹预测

2022, 42(5): 102-109. doi: 10.3969/j.issn.1673-9159.2022.05.013

基于特征注意力机制的RNN-Bi-LSTM船舶轨迹预测

海南大学机电工程学院, 海南 海口 570228

收稿日期:2022-04-07
修回日期:2022-04-07

关键词: AIS信息 , 循环神经网络 , 双向长短时记忆网络 , 特征注意力机制 , 船舶轨迹预测

Ship Trajectory Prediction of RNN-Bi-LSTM Based on Characteristic Attention Mechanism

College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China

Received Date:2022-04-07
Accepted Date:2022-04-07

Keywords: AIS data , recurrent neural network , bidirectional long/ short-term memory , characteristic attention mechanism , ship trajectory prediction

【目的】为更准确预测船舶轨迹,基于RNN、Bi-LSTM 和注意力机制,研究一种结合特征注意力机制的RNN-Bi-LSTM 的船舶轨迹预测模型。【方法】基于AIS 数据构建基于循环神经网络(RNN)与双向长短时记忆网络(Bi-LSTM)的混合神经网络模型,并在混合模型中加入特征注意力机制对数据特征进行权重分配,提升模型对船舶轨迹预测精度。【结果】使用实际运行的船舶AIS数据,对模型的有效性和实用性进行验证,测试集均方误差为2.751×10-5、均方根误差为5.245×10-3,在连续弯道预测中的均方误差为4.359×10-6、均方根误差为2.088×10-3。【结论】结合特征注意力机制的RNN-Bi-LSTM相较于传统的预测神经网络,船舶轨迹预测精度更高,尤其在弯道预测中也表现出较好的符合度。

【Objective】In order to predict ship trajectory more accurately, based on RNN, Bi-LSTM and attention mechanism, a ship trajectory prediction model of RNN-Bi-LSTM combined with characteristic attention mechanism is studied.【Method】Based on AIS data, a hybrid neural network model based on recurrent neural network (RNN) and bidirectional long/ short-term memory(Bi-LSTM) is constructed, and the characteristic attention mechanism is added to the hybrid model to assign weights to the data features, which improves the trajectory prediction of the model.【Result】The effectiveness and practicability of the model AR-Bi-LSTM were verified by using the actual ship AIS data; the mean squared error(MSE)of the test set was 2.751×10-5, the root mean square error(RMSE)of the test set was 5.245×10-3; while the MSE was 4.359×10-6, and the RMSE was 2.088×10-3in the continuous curve prediction.【Conclusion】 Experimental results show that the RNN-Bi-LSTM combined with the Characteristic Attention Mechanism has higher accuracy than the traditional prediction neural network, especially in the curve prediction.

参考文献

[1] 姜佰辰,关键,周伟,等.基于多项式卡尔曼滤波的船舶轨迹预测算法[J].信号处理, 2019, 35(5):741-746.
[2] 周艳萍,曾宪群,蔡玲.改进灰色模型的船舶航行轨迹自动预测研究[J].舰船科学技术, 2021, 43(20):34-36.
[3] 何静.利用卡尔曼滤波预测船舶航行轨迹异常行为[J].舰船科学技术, 2017, 39(2):16-18.
[4] 李永,成梦雅.LSTM船舶航迹预测模型[J].计算机技术与发展, 2021, 31(9):149-154.
[5] 王研婷.基于CNN和LSTM的船舶航迹预测[D].大连:大连海事大学, 2020.
[6] ZHANG S, WANG L, ZHU M D, et al.A Bi-directional LSTM ship trajectory prediction method based on attention mechanism[C]//2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference.IEEE, 2021:1987-1993.
[7] 赵梁滨.基于AIS数据和循环神经网络的船舶轨迹异常检测[D].大连:大连海事大学, 2019.
[8] WANG C,FU Y H.Ship trajectory prediction based on attention in bidirectional recurrent neural networks[C]//2020 5th International Conference on Information Science, Computer Technology and Transportation, ISCTT, 2020:529-533.
[9] SUO Y F, CHEN W K, CLARAMUNT C, et al.A ship trajectory prediction framework based on a recurrent neural network[J].Sensors (Basel, Switzerland), 2020, 20(18):5133.
[10] 权波,杨博辰,胡可奇,等.基于LSTM的船舶航迹预测模型[J].计算机科学, 2018, 45(S2):126-131.
[11] 丁孟真.基于AIS数据的船舶轨迹预测方法研究[D].兰州:兰州大学, 2020.
[12] LUONG T, PHAM H, MANNING C D.Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, PA, USA:Association for Computational Linguistics, 2015:1412-1421.
[13] LI C K, HOU Y H, WANG P C, et al.Joint distance maps based action recognition with convolutional neural networks[J].IEEE Signal Processing Letters, 2017, 24(5):624-628.
[14] ZHANG Z Y, NI G X, XU Y G.Ship trajectory prediction based on LSTM neural network[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference.IEEE, 2020:1356-1364.
[15] 胡玉可.基于循环神经网络的船舶轨迹预测方法研究[D].合肥:合肥工业大学, 2020.
[16] 龚志猛,冷文浩,孟斌.潜航器轨迹跟踪与航向预测算法[J].船舶工程, 2019, 41(2):56-61.
[17] 黄妙芬,王江颖,邢旭峰,等.基于LSTM网络的海水石油污染含量遥感预测模型[J].广东海洋大学学报, 2021, 41(5):67-73.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

基于特征注意力机制的RNN-Bi-LSTM船舶轨迹预测