2022, 42(5): 18-26. doi: 10.3969/j.issn.1673-9159.2022.05.003
关键词: 军曹鱼 , 低温胁迫 , 生理生化指标 , 抗氧化酶 , 凋亡相关基因
Keywords: Rachycentron canadum , low-temperature stress , biochemical index , antioxidant enzyme , apoptosis-related gene
【目的】探究低温对军曹鱼(Rachycentron canadum)幼鱼生理机能的影响。【方法】将军曹鱼幼鱼分别置于28(对照组)、25、21、18 ℃4 种温度条件下,于0、4、7 d 取样检测血清生化指标、肝脏抗氧化酶活性和凋亡相关基因表达量。【结果】(1)军曹鱼血清葡萄糖(GLU)含量在4、7 d时28℃组显著高于温度处理组(P < 0.05);甘油三酯(TG)含量在0、7 d时21、18 ℃组显著高于28、25 ℃组(P < 0.05);总胆固醇(T-CHO)含量在21、18 ℃组所有时间点均显著低于28、25 ℃组(P < 0.05);总蛋白(TP)含量仅在7 d 时21、18 ℃组显著低于28、25 ℃组(P < 0.05);谷丙转氨酶(ALT)活性在0、4 d时18 ℃组含量显著高于其他组(P < 0.05);谷草转氨酶(AST)活性在0 d时28 ℃组显著低于温度处理组(P < 0.05);碱性磷酸酶(AKP)在4、7 d时21、18 ℃组与28、25 ℃组有显著差异(P < 0.05)。(2)肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性在4、7 d 时21、18 ℃组显著低于28、25 ℃组(P < 0.05);谷胱甘肽过氧化物酶(GPx)活性在4 d 时21、18 ℃组显著低于28、25 ℃组(P < 0.05),在7 d 时则显著升高(P < 0.05)。丙二醛(MDA)含量21℃和18℃组均高于28、25 ℃组且在7 d时差异显著(P < 0.05)。(3)肝脏凋亡相关基因bax、caspase-9、caspase-3、p53、mdm2 表达量在温度处理组中均高于28 ℃组,Bcl-2 在0、7 d 时18 ℃组显著低于其他组(P < 0.05)。【结论】低温胁迫显著降低军曹鱼幼鱼血清抗氧化相关酶活性,诱导肝脏组织中凋亡相关基因表达,从而造成氧化损伤,促进细胞凋亡。
【目的】探究低温对军曹鱼(Rachycentron canadum)幼鱼生理机能的影响。【方法】将军曹鱼幼鱼分别置于28(对照组)、25、21、18 ℃4 种温度条件下,于0、4、7 d 取样检测血清生化指标、肝脏抗氧化酶活性和凋亡相关基因表达量。【结果】(1)军曹鱼血清葡萄糖(GLU)含量在4、7 d时28℃组显著高于温度处理组(P < 0.05);甘油三酯(TG)含量在0、7 d时21、18 ℃组显著高于28、25 ℃组(P < 0.05);总胆固醇(T-CHO)含量在21、18 ℃组所有时间点均显著低于28、25 ℃组(P < 0.05);总蛋白(TP)含量仅在7 d 时21、18 ℃组显著低于28、25 ℃组(P < 0.05);谷丙转氨酶(ALT)活性在0、4 d时18 ℃组含量显著高于其他组(P < 0.05);谷草转氨酶(AST)活性在0 d时28 ℃组显著低于温度处理组(P < 0.05);碱性磷酸酶(AKP)在4、7 d时21、18 ℃组与28、25 ℃组有显著差异(P < 0.05)。(2)肝脏超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性在4、7 d 时21、18 ℃组显著低于28、25 ℃组(P < 0.05);谷胱甘肽过氧化物酶(GPx)活性在4 d 时21、18 ℃组显著低于28、25 ℃组(P < 0.05),在7 d 时则显著升高(P < 0.05)。丙二醛(MDA)含量21℃和18℃组均高于28、25 ℃组且在7 d时差异显著(P < 0.05)。(3)肝脏凋亡相关基因bax、caspase-9、caspase-3、p53、mdm2 表达量在温度处理组中均高于28 ℃组,Bcl-2 在0、7 d 时18 ℃组显著低于其他组(P < 0.05)。【结论】低温胁迫显著降低军曹鱼幼鱼血清抗氧化相关酶活性,诱导肝脏组织中凋亡相关基因表达,从而造成氧化损伤,促进细胞凋亡。
[1] | 彭婷,胡庭俊,林勇,等.低温胁迫对罗非鱼血液生化、免疫及抗氧化指标的影响[J].水产科学, 2012, 31(5):259-263. |
[2] | 邵彦翔,陈超,李炎璐,等.低温胁迫对云纹石斑鱼(♀)×鞍带石斑鱼(♂)杂交后代血清生化指标的影响[J].渔业科学进展, 2017, 38(2):70-76. |
[3] | 常玉梅,曹鼎臣,孙效文,等.低温胁迫对鲤血清生化指标的影响[J].水产学杂志, 2006, 19(2):71-75. |
[4] | TSENG Y C, CHEN R D, LUCASSEN M, et al.Exploring uncoupling proteins and antioxidant mechanisms under acute cold exposure in brains of fish[J].PLoS One, 2011, 6(3):e18180. |
[5] | 王中铎,陈铁妹,郭昱嵩,等.军曹鱼全人工繁殖群体遗传特征的SSR分析[J].广东海洋大学学报, 2010, 30(3):16-21. |
[6] | 石琼,范明君,张勇.中国经济鱼类志[M].武汉:华中科技大学出版社, 2015. |
[7] | 蔡润佳,张静,黄建盛,等.低温胁迫对军曹鱼幼鱼脂代谢相关生理生化的影响[J].广东海洋大学学报, 2021, 41(3):123-130. |
[8] | 王维政,杨林桐,杨二军,等.低氧胁迫对军曹鱼幼鱼免疫相关基因转录水平表达的影响[J].海洋学报, 2021, 43(9):92-101. |
[9] | 管标,温海深,刘群,等.急性温度胁迫对虹鳟血细胞和血清生化组分的影响[J].海洋湖沼通报, 2014(3):63-68. |
[10] | LONG L N, ZHANG H G, NI Q, et al.Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system[J].Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology, 2019, 219:25-34. |
[11] | 邵彦翔,陈超,张廷廷,等.高温胁迫对2种杂交石斑鱼存活率及血清生化指标的影响[J].广东海洋大学学报, 2017, 37(6):89-95. |
[12] | 董少杰,苗建春,赵凯婷.长吻鮠血液生理生化指标的研究[J].湖北农业科学, 2016, 55(14):3690-3693. |
[13] | 徐浩,张东玲,陈庆凯,等.低温下饥饿胁迫对大黄鱼血清生化指标的影响[J].生物技术通报, 2015, 31(6):195-199. |
[14] | 宁军号,秦宇博,胡伦超,等.水温骤降和缓降胁迫对褐篮子鱼血液生理生化指标的影响[J].大连海洋大学学报, 2017, 32(3):294-301. |
[15] | 陈超,施兆鸿,薛宝贵,等.低温胁迫对七带石斑鱼幼鱼血清生化指标的影响[J].水产学报, 2012, 36(8):1249-1255. |
[16] | DAHLHOFF E P.Biochemical indicators of stress and metabolism:applications for marine ecological studies[J].Annual Review of Physiology, 2004, 66:183-207. |
[17] | 区又君,范春燕,李加儿,等.急性低氧胁迫对卵形鲳鲹选育群体血液生化指标的影响[J].海洋学报(中文版), 2014, 36(4):126-131. |
[18] | 施兆鸿,张艳亮,高权新,等.云纹石斑鱼幼鱼血清生化指标对低温胁迫的响应[J].生态学杂志, 2015, 34(8):2222-2228. |
[19] | 肖炜,陈炳霖,祝璟琳,等.尼罗罗非鱼幼鱼对亚硝酸盐氮长期胁迫的生理功能响应[J].中国水产科学, 2020, 27(11):1305-1315. |
[20] | MOREL Y, BAROUKI R.Repression of gene expression by oxidative stress[J].The Biochemical Journal, 1999, 342(Pt 3):481-496. |
[21] | 陆健,张佳佳,王佩佩,等.急性温度胁迫对大口黑鲈存活率及肝脏生化指标的影响[J].淡水渔业, 2020, 50(2):87-93. |
[22] | 管敏,张德志,王龙,等.子二代中华鲟对急性低温胁迫的生理响应[J].水产科学, 2019, 38(4):458-464. |
[23] | 宋志明,刘鉴毅,庄平,等.低温胁迫对点篮子鱼幼鱼肝脏抗氧化酶活性及丙二醛含量的影响[J].海洋渔业, 2015, 37(2):142-150. |
[24] | 潘桂平,刘本伟,周文玉.低温胁迫对云纹石斑鱼幼鱼抗氧化和免疫指标的影响[J].上海海洋大学学报, 2016, 25(1):78-85. |
[25] | MARTÍNEZ-MORENTIN L, MARTÍNEZ L, PILOTO S, et al.Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model[J].Human Molecular Genetics, 2015, 24(13):3608-3622. |
[26] | 陈小雁,熊真真,尤姗姗,等.FLASH结合p53并增强其转录活性[J].中国生物化学与分子生物学报, 2021, 37(10):1345-1356. |
[27] | 刘林,赵群芬,金凯星,等.纳米氧化锌对斑马鱼肝脏的毒性效应[J].环境科学, 2015, 36(10):3884-3891. |
[28] | YUAN F, WANG J L, LI R X, et al.A new regulatory mechanism between P53 and YAP crosstalk by SIRT1 mediated deacetylation to regulate cell cycle and apoptosis In A549 cell lines[J].Cancer Management and Research, 2019, 11:8619-8633. |
[29] | 文鑫.暗纹东方鲀(Takifugu fasciatus)应对低温胁迫的生理响应和分子机制研究[D].南京:南京师范大学, 2019. |
[30] | WEST I C.Radicals and oxidative stress in diabetes[J].Diabetic Medicine, 2000, 17(3):171-180.https://doi.org/10.1046/j.1464-5491.2000.00259.x |
[31] | LIU L L, ZHANG R, WANG X W, et al.Transcriptome analysis reveals molecular mechanisms responsive to acute cold stress in the tropical stenothermal fish tiger barb (Puntius tetrazona)[J].BMC Genomics, 2020, 21(1):737. |
[32] | CASTELLANOS-GALINDO G, BAOS R, ZAPATA L.Mariculture-induced introduction of cobia Rachycentron canadum(Linnaeus, 1766), a large predatory fish, in the Tropical Eastern Pacific[J].BioInvasions Records, 2016, 5(1):55-58.https://doi.org/10.3391/bir.2016.5.1.10 |
[1] | 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022 |