2022, 42(5): 9-17. doi: 10.3969/j.issn.1673-9159.2022.05.002
关键词: 花鲈 , 转录组 , 差异表达基因 , GO富集 , KEGG富集
Keywords: Lateolabrax maculatus , transcriptome , differentially expressed genes , GO enrichment , KEGG enrichment
【目的】筛选与花鲈肌肉生长相关的基因和信号通路,为揭示花鲈肌肉生长发育的遗传机制提供理论依据。【方法】分别取4尾生长快速[体长(34.22±2.53)cm]和4尾生长慢速[体长(17.46±1.78)cm]的花鲈个体肌肉进行转录组测序。用DESeq2 R 软件包筛选差异表达基因(Differentially expressed genes,DEGs),对DEGs进行GO富集和KEGG富集分析。通过实时荧光定量PCR验证转录组数据的准确性。【结果与结论】测序原始数据经过质量控制和组装共得到137 960 个unigenes,其中68 334 个unigenes 在Nr 中注释成功。获得10 552 个DEGs,其中2 064个DEGs表达量上调,8 488个DEGs表达量下调,鉴定出胰岛素样生长因子结合蛋白1基因(IGFBP1)、纤维细胞生长因子基因(FGF)、肌肉生长抑制素基因(MSTN)、生长激素受体1 基因(GHR1)等与肌肉生长发育相关的基因。DEGs 的GO 富集结果显示,与物质和能量代谢相关的条目差异显著。KEGG 富集结果显示,糖酵解/合成、腺苷酸活化蛋白激酶(AMPK)、脂肪酸降解、精氨酸和脯氨酸代谢等信号通路与肌肉生长密切相关。
【Objective】This study aimed to screen candidate genes and signaling pathways that affect the muscle growth of Lateolabrax maculatus, providing a theoretical basis for elucidating the genetic mechanism of the growth and development of muscle of the fish.【Method】The skeletal muscle tissue were clipped from four fast-growing individuals (34.22±2.53 cm, body length) and four slow-growing individuals(17.46±1.78 cm, body length)for transcriptome sequencing.Differentially expressed genes(DEGs) were identified with DESeq2 R package firstly, and then were analyzed by Gene Ontology(GO) and KEGG enrichment.The transcriptome data were confirmed by real-time quantitative PCR.【Result and Conclusion】The raw data of sequencing obtained a total of 137 960 unigenes of wich 68 334 unigenes were annotated in Nr database successfully.A total of 10 552 DEGs were identified, of which 2 064 DEGs were up-regulated and 8 488 DEGs were down regulated.A few genes are related to growth of muscle, such as insulin-like growth factor-binding protein 1 (IGFBP1), fibroblast growth factor (FGF), myostatin (MSTN), growth hormone receptor 1 (GHR1), etc.The result of GO richment of DEGs showed that the term about material and energy metabolism was significance of difference.The result of KEGG showed that some signal pathways, including glycolysis/gluconeogenesis, arginine and proline metabolism, adenosine monophosphate activated protein kinase (AMPK) and fatty acid degradation, etc, were related closely with muscle growth and development.
[1] | DIXIT M, POUDEL S B, YAKAR S.Effects of GH/IGF axis on bone and cartilage[J].Molecular and Cellular Endocrinology, 2021, 519:111052. |
[2] | DEVLIN R H, D'ANDRADE M, UH M, et al.Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions[J].Proceedings of National Academy of Sciences of the Unit-ed States of America, 2004, 101(25):9303-9308. |
[3] | TEROVA G, RIMOLDI S, CHINI V, et al.Cloning and expression analysis of insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax, L.) dur-ing long-term fasting and refeeding[J].Journal of Fish Biol-ogy, 2007, 70:219-233. |
[4] | GÖKÇEK E Ö, IŞıK R.Associations between genetic variants of the insulin-like growth factor I (IGF-I) gene and growth traits in European Sea bass (Dicentrarchus labrax, L.)[J].Fish Physiology and Biochemistry, 2020, 46(3):1131-1138. |
[5] | MCPHERRON A C, LEE S J.Double muscling in cattle due to mutations in the myostatin gene[J].Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(23):12457-12461. |
[6] | KOCMAREK A L, FERGUSON M M, DANZMANN R G.Co-localization of growth QTL with differentially expressed candidate genes in rainbow trout[J].Genome, 2015, 58(9):393-403. |
[7] | LI N, ZHOU T, GENG X, et al.Identification of novel genes significantly affecting growth in catfish through GWAS analysis[J].Molecular Genetics and Genomics, 2018, 293(3):587-599. |
[8] | JIANG L K, ZHANG S H, DONG C J, et al.Genome-wide identification, phylogeny, and expression of fibroblast growth genes in common carp[J].Gene, 2016, 578(2):225-231. |
[9] | 孙雪,李胜杰,姜鹏,等.利用RNA-Seq技术分析草鱼生长性状相关基因和SNP标记[J].水产学报, 2021, 45(3):333-344. |
[10] | ZHANG J H, SHEN Y B, XU X Y, et al.Transcriptome analysis of the liver and muscle tissues of black carp (Mylopharyngodon piceus) of different growth rates[J].Marine Biotechnology (New York, N Y), 2020, 22(5):706-716. |
[11] | LUO W W, ZHOU Y, WANG J R, et al.Identifying candidate genes involved in the regulation of early growth using full-length transcriptome and RNA-seq analyses of frontal and parietal bones and vertebral bones in bighead carp (Hypophthalmichthys nobilis)[J].Frontiers in Genetics, 2021, 11:603454. |
[12] | CLEVELAND B M, GAO G T, LEEDS T D.Transcriptomic response to selective breeding for fast growth in rainbow trout (Oncorhynchus mykiss)[J].Marine Biotechnology (New York, N Y), 2020, 22(4):539-550. |
[13] | 王兰梅,朱文彬,傅建军,等.福瑞鲤2号不同生长速率个体肌肉组织转录组分析[J].水产学报, 2021, 45(1):79-87. |
[14] | 彭彪彪,赵峰,王思凯,等.中国花鲈在长江口不同亚生境中的栖息特征[J].南方水产科学, 2021, 17(4):1-8. |
[15] | 孙彩云,董宏标,王文豪,等.月桂酸单甘油酯对花鲈脂质代谢的影响[J].南方水产科学, 2021, 17(1):67-75. |
[16] | LIU Y, WANG H L, WEN H S, et al.First high-density linkage map and QTL fine mapping for growth-related traits of spotted sea bass (Lateolabrax maculatus)[J].Marine Biotechnology (New York, N Y), 2020, 22(4):526-538. |
[17] | 钱焜.花鲈类胰岛素生长因子及结合蛋白基因的克隆与表达调控[D].青岛:中国海洋大学, 2013. |
[18] | 张沛.花鲈生长代谢相关基因克隆与盐度调控生理机制[D].青岛:中国海洋大学, 2015. |
[19] | BOLGER A M, LOHSE M, USADEL B.Trimmomatic:a flexible trimmer for Illumina sequence data[J].Bioinfor-matics, 2014, 30(15):2114-2120. |
[20] | HAAS B J, PAPANICOLAOU A, YASSOUR M, et al.De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J].Nature Protocols, 2013, 8(8):1494-1512. |
[21] | MORIYA Y, ITOH M, OKUDA S, et al.KAAS:an auto-matic genome annotation and pathway reconstruction server[J].Nucleic Acids Research, 2007, 35(suppl_2):W182-W185. |
[22] | PATRO R, DUGGAL G, LOVE M I, et al.Salmon provides fast and bias-aware quantification of transcript expression[J].Nature Methods, 2017, 14(4):417-419. |
[23] | ROWLERSON A, VEGGETTI A.Cellular mechanisms of post-embryonic muscle growth in aquaculture species[M]//Fish Physiology.Amsterdam:Elsevier, 2001:103-140. |
[24] | AMENYOGBE E, CHEN G, WANG Z L.Identification, characterization, and expressions profile analysis of growth hormone receptors (GHR1 and GHR2) in Hybrid grouper (Epinephelus fuscoguttatus ♀×Epinephelus polyphekadion♂)[J].Genomics, 2020, 112(1):1-9. |
[25] | REINDL K M, SHERIDAN M A.Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates[J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2012, 163(3/4):231-245. |
[26] | KITTILSON J D, JONES E, SHERIDAN M A.ERK, Akt, and STAT5 are differentially activated by the two growth hormone receptor subtypes of a teleost fish (Oncorhynchus mykiss)[J].Frontiers in Endocrinology, 2011, 2:30. |
[27] | KAJIMURA S, AIDA K, DUAN C M.Insulin-like growth factor-binding protein-1(IGFBP-1) mediates hypoxiainduced embryonic growth and developmental retardation[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(4):1240-1245. |
[28] | CLEMMONS D R.Use of mutagenesis to probe IGFbinding protein structure/function relationships[J].Endo-crine Reviews, 2001, 22(6):800-817. |
[29] | LI M Y, LI Y, LU L, et al.Structural, gene expression, and functional analysis of the fugu (Takifugu rubripes) insulinlike growth factor binding protein-4 gene[J].American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2009, 296(3):R558-R566. |
[30] | BOWER N I, LI X J, TAYLOR R, et al.Switching to fast growth:the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon[J].The Journal of Experimental Biology, 2008, 211(Pt 24):3859-3870. |
[31] | YAMANAKA Y, WILSON E M, ROSENFELD R G, et al.Inhibition of insulin receptor activation by insulin-like growth factor binding proteins[J].Journal of Biological Chemistry, 1997, 272(49):30729-30734. |
[32] | LI S J, LIU H, BAI J J, et al.Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus salmoides)[J].Genetica, 2017, 145(2):175-187. |
[33] | SELLERS J R.Myosins:a diverse superfamily[J].Biochimica et Biophysica Acta-Molecular Cell Research, 2000, 1496(1):3-22. |
[34] | GUÉRILLON C, BIGOT N, PEDEUX R.The ING tumor suppressor genes:status in human tumors[J].Cancer Letters, 2014, 345(1):1-16. |
[35] | WANG Y L, TAN J, LI J, et al.ING5 inhibits migration and invasion of esophageal cancer cells by downregulating the IL-6/CXCL12 signaling pathway[J].Technology in Cancer Research&Treatment, 2021, 20:15330338211039940. |
[36] | TASSI E, GARMAN K A, SCHMIDT M O, et al.Fibroblast Growth Factor Binding Protein 3(FGFBP3) impacts carbohydrate and lipid metabolism[J].Scientific Reports, 2018, 8:15973. |
[37] | ARMAND A S, LÉCOLLE S, LAUNAY T, et al.IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6[J].Experimental Cell Research, 2004, 297(1):27-38. |
[38] | XU Y Y, TAN Q S, HU P C, et al.Characterization and expression analysis of FGF6(fibroblast growth factor 6) genes of grass carp (Ctenopharyngodon idellus) reveal their regulation on muscle growth[J].Fish Physiology and Biochemistry, 2019, 45(5):1649-1662. |
[39] | STEINBERG F, ZHUANG L, BEYELER M, et al.The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos[J].Journal of Biological Chemistry, 2010, 285(3):2193-2202. |
[40] | BAERTSCHI S, ZHUANG L, TRUEB B.Mice with a targeted disruption of the Fgfrl1 gene Die at birth due to alterations in the diaphragm[J].The FEBS Journal, 2007, 274(23):6241-6253. |
[41] | LIN S T, ZHENG G D, SUN Y W, et al.Divergent functions of fibroblast growth factor receptor-like 1 genes in grass carp (Ctenopharyngodon idella)[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2015, 187:31-38. |
[42] | NUGENT M A, IOZZO R V.Fibroblast growth factor-2[J].The International Journal of Biochemistry&Cell Biology, 2000, 32(2):115-120. |
[43] | NICOLI S, DE SENA G, PRESTA M.Fibroblast growth factor 2-induced angiogenesis in zebrafish:the zebrafish yolk membrane (ZFYM) angiogenesis assay[J].Journal of Cellular and Molecular Medicine, 2009, 13(8b):2061-2068. |
[44] | CANOSA L F, BERTUCCI J I.Nutrient regulation of somatic growth in teleost fish.The interaction between somatic growth, feeding and metabolism[J].Molecular and Cellular Endocrinology, 2020, 518:111029. |
[45] | LU X, CHEN H M, QIAN X Q, et al.Transcriptome analysis of grass carp (Ctenopharyngodon idella) between fastand slow-growing fish[J].Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2020, 35:100688. |
[46] | 林明德,陈刚,马骞,等.杂交石斑鱼和母本褐点石斑鱼转录组测序及差异表达基因分析[J].广东海洋大学学报, 2019, 39(3):15-23. |
[47] | LIU X G, ZENG S, LIU S, et al.Identifying the related genes of muscle growth and exploring the functions by compensatory growth in mandarin fish (Siniperca chuatsi)[J].Frontiers in Physiology, 2020, 11:553563. |
[48] | JOHANSEN K A, OVERTURF K.Alterations in expression of genes associated with muscle metabolism and growth during nutritional restriction and refeeding in rainbow trout[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2006, 144(1):119-127. |
[49] | THOMSON D M.The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration[J].International Journal of Molecular Sciences, 2018, 19(10):3125. |
[50] | WU G Y.Functional amino acids in nutrition and health[J].Amino Acids, 2013, 45(3):407-411. |
[51] | GENUTH N R, BARNA M.The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life[J].Molecular Cell, 2018, 71(3):364-374. |
[1] | 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022 |