首页 >  广东海洋大学学报 >  混合益生酵母菌对刺参幼参生长、消化酶活力和免疫反应的影响

2022, 42(4): 23-30. doi: 10.3969/j.issn.1673-9159.2022.04.003

混合益生酵母菌对刺参幼参生长、消化酶活力和免疫反应的影响

1. 大连海洋大学/辽宁省水生生物学重点实验室, 辽宁 大连 116023;

2. 大连海事大学环境科学与工程学院, 辽宁 大连 116026;

3. 大连汇新钛设备开发有限公司, 辽宁 大连 116039

收稿日期:2022-01-24

基金项目:   国家重点研发计划项目(2020YFD0900202)  辽宁省教育厅项目(JL201903)  大连市杰出青年科技人才项目(2017RJ10) 

关键词: 刺参 , 生长 , 消化酶活力 , 免疫反应 , 混合益生菌 , 梅奇酵母C14 , 仙人掌有孢汉逊酵母C21

Effects of Dietary Probiotic Yeast Mixture on Growth, Digestive Enzyme Activity and Immune Response of Juvenile Sea Cucumber (Apostichopus japonicus)

1. Key Laboratory of Hydrobiology in Liaoning Province/Dalian Ocean University, Dalian 116023, China;

2. College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China;

3. Dalian Huixin Titanium Equipment Development Company Limited, Dalian 116039, China

Received Date:2022-01-24

Keywords: Apostichopus japonicus , growth , digestive enzyme activity , immune response , probiotic mixture , Metschnikowia sp.C14 , Hanseniaspora opuntiae C21

【目的】研究饲料中添加梅奇酵母(Metschnikowia sp.)C14和仙人掌有孢汉逊酵母(Hanseniaspora opuntiae)C21混合益生酵母菌对刺参(Apostichopus japonicus)幼参生长、消化酶活力和免疫反应的影响。【方法】将幼参分为4组,对照组饲喂基础饲料;实验组分别饲喂添加C14、C21及混合菌(C14+C21)饲料,分别记为M、H和MH组,每株菌添加量在各实验组均为1×105 g-1。实验组幼参连续饲喂28 d后,均改饲基础饲料(29~38 d)。于7、14、21、28、29、31、33、35、38 d时测定幼参体质量,以比色分析法测定肠道消化酶活力以及体腔液上清液(CF)和体腔细胞裂解液上清液(CLS)的免疫参数,平板菌落计数法检测刺参肠道中饲喂酵母菌细胞数量。【结果】与对照和单一益生酵母菌(C14和C21)组相比,饲喂含混合菌饲料21和28 d时幼参特定生长率显著提高(28 d为2.48%·d-1)。MH组幼参肠道胰蛋白酶(28,29~33 d)和脂肪酶(28,29~33 d)活力显著高于对照和单一益生酵母菌(C14和/或C21)组,28 d时分别为500 U·mg-1和20 U·g-1。与对照和单一益生酵母菌(C14和C21)组相比,MH组幼参体腔细胞的吞噬活力(28,29~33 d)和呼吸爆发(28,29~31 d)显著增强,28 d时吞噬的酵母颗粒为3.7×108 mg-1,呼吸爆发(OD630 nm)为0.43。28 d时,MH组幼参CF的溶菌酶(LSZ)和总一氧化氮合成酶(T-NOS)活力显著高于对照和H组,分别为17、5.5 U·mL-1;MH组幼参CLS的LSZ活力为18 U·mg-1,显著高于其他3组,其T-NOS活力为7.0 U·mg-1,显著高于对照及M组。停止饲喂含菌饲料后,MH组幼参CF的LSZ活力(29~35 d)和T-NOS(29~31 d)活力以及CLS的LSZ活力(29~31 d)和T-NOS(29~33 d)活力与其他3组之间差异仍显著。幼参肠道中C14和C21数量与肠道消化酶活力以及所测免疫参数(CF的T-NOS活力除外)呈正相关性。【结论】饲喂C14和C21混合益生酵母菌28 d对幼参生长、消化酶活力和先天免疫反应的影响大于饲喂单一酵母菌,停饲含混合益生菌饲料3 d内C14、C21仍显著影响幼参消化酶活力和免疫反应。

【Objective】This study was to evaluate the effects of probiotic yeast Metschnikowia sp.C14 in combination with Hanseniaspora opuntiae C21 on growth, intestinal digestive enzyme activity, and immune response of juvenile sea cucumber (Apostichopus japonicus).【Method】Sea cucumbers were divided into four groups and fed one of the following diets:basal diet (control); diet containing C14 (1×105 cells·g-1) (M); diet containing C21 (1×105 cells·g-1) (H); and diet containing C14 (1×105 cells·g-1) and C21(1×105 cells·g-1) (MH).After feeding for 28 days, sea cucumbers in M, H and MH groups were switched to the basal diet from day 29 to day 38.During feeding, the variations of growth (weighing), intestinal digestive enzyme activity (colorimetric analysis), and immune parameters (colorimetric analysis) in coelomic fluid supernatant (CF) and coelomocyte lysate supernatant (CLS) of sea cucumbers and the numbers of yeasts fed in the intestines were measured on days 7, 14, 21, 28, 29, 31, 33, 35 and 38.【Results】Sea cucumbers fed with the diet containing (C14+C21) for 21 days and 28 days had higher specific growth rates (2.48%·d-1 on day 28) compared with the control and single probiotic yeast (C14 and C21) groups.The intestinal trypsin activity (on day 28 and from day 29 to day 33) and lipase activity (on day 28 and from day 29 to day 33) of sea cucumbers in the MH group were significantly higher than the values of sea cucumbers in the control and single probiotic yeast (C14 and/or C21) groups, which were 500 U·mg-1 and 20 U·g-1 on day 28, respectively.Sea cucumbers in the MH group showed a significant improvement in phagocytic activity (on day 28 and from day 29 to day 33) and respiratory burst (OD630nm)(on day 28 and from day 29 to day 31) compared with the control and single probiotic yeast (C14 and C21)groups, which were 3.7 × 108 zymosan particles phagocytosed mg-1 and 0.43 on day 28, respectively.After feeding for 28 days, the lysozyme (LSZ) and total nitric oxide synthase (T-NOS) activities in CF of sea cucumbers in the MH group were significantly higher than those in the control and H groups, which were 17 U·mL-1 and 5.5 U·mL-1, respectively; the LSZ activity in CLS of sea cucumbers in the MH group was 18 U·mg-1, which was significantly higher than those in the other three groups, and the T-NOS activity was 7.0 U·mg-1, which was significantly higher than those in the control and M groups.Moreover, there were still significant differences in LSZ activity (from day 29 to day 35) and T-NOS activity (from day 29 to day 31) in the CF, and LSZ activity (from day 29 to day 31) and T-NOS activity (from day 29 to day 33) in the CLS of sea cucumbers between MH and the other three groups after the stop of feeding.The numbers of cells of both yeasts colonizing the sea cucumber intestines were positively correlated with intestinal digestive enzyme activity and all measured immune parameters (except the T-NOS activity in CF).【Conclusion】The effects of feeding the probiotic mixture of C14 and C21 for 28 days on the growth, digestive enzyme activity and innate immune response of sea cucumbers were greater than those of single yeast group, and the both yeasts still significantly affected their digestive enzyme activity and immune response within 3 days after the stop of feeding.

参考文献

[1] 李成华.刺参腐皮综合征发生的分子调控机制研究进展[J].大连海洋大学学报, 2021, 36(3):355-373.
[2] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会.中国渔业统计年鉴[M].北京:中国农业出版社, 2021.
[3] HAN Q X, KEESING J K, LIU D Y.A review of sea cucumber aquaculture, ranching, and stock enhancement in China[J].Reviews in Fisheries Science and Aquaculture, 2016, 24(4):326-341.
[4] 王凤青.海参养殖池耐药菌的分析及五株海洋新菌的鉴定[D].济南:山东大学, 2016.
[5] 闫倩倩, 李彬, 廖梅杰, 等.山东主要刺参养殖区幼参肠道抗生素耐药菌及耐药基因分布特征[J].渔业科学进展, 2020, 41(4):134-143.
[6] 李兆新, 董晓, 孙晓杰, 等.渔业养殖环境中抗生素残留检测与控制技术研究进展[J].食品安全质量检测学报, 2017, 8(7):2678-2686.
[7] WANG A R, RAN C, WANG Y B, et al.Use of probiotics in aquaculture of China—a review of the past decade[J].Fish and Shellfish Immunology, 2019, 86:734-755.
[8] ANGULO M, REYES-BECERRIL M, MEDINA-CÓRDOVA N, et al.Probiotic and nutritional effects of Debaryomyces hansenii on animals[J].Applied Microbiology and Biotechnology, 2020, 104(18):7689-7699.
[9] CESEÑA C E, VEGA-VILLASANTE F, AGUIRRE-GUZMAN G, et al.Update on the use of yeast in shrimp aquaculture:a minireview[J].International Aquatic Research, 2021, 13:1-16.
[10] YANG Z P, SUN J M, XU Z, et al.Beneficial effects of Metschnikowia sp.C14 on growth and intestinal digestive enzymes of juvenile sea cucumber Apostichopus japonicus[J].Animal Feed Science and Technology, 2014, 197:142-147.
[11] MA Y X, LIU Z M, YANG Z P, et al.Effects of Hanseniaspora opuntiae C21 on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicas[J].Chinese Journal of Oceanology and Limnology, 2014, 32(4):743-748.
[12] LIU Z M, MA Y X, YANG Z P, et al.Immune responses and disease resistance of the juvenile sea cucumber Apostichopus japonicus induced by Metschnikowia sp.C14[J].Aquaculture, 2012, 368/369:10-18.
[13] MA Y X, LIU Z M, YANG Z P, et al.Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus[J].Fish and Shellfish Immunology, 2013, 34(1):66-73.
[14] LI M, BAO P Y, SONG J, et al.Colonization and probiotic effect of Metschnikowia sp.C14 in the intestine of juvenile sea cucumber, Apostichopus japonicus[J].Journal of Ocean University of China, 2020, 19(1):225-231.
[15] MA Y X, LI L Y, BAO P Y, et al.Effects of combined dietary administration of Rhodotorula sp.H26 and Bacillus sp.BC26 on growth, immunity and intestinal microbiota in juvenile sea cucumber, Apostichopus japonicus[J].Aquaculture Research, 2018, 49(12):3792-3803.
[16] MA Y X, LI L Y, LI M, et al.Effects of dietary probiotic yeast on growth parameters in juvenile sea cucumber, Apostichopus japonicus[J].Aquaculture, 2019, 499:203-211.
[17] 刘姣, 韩华, 孙飞雪, 等.饵料中添加芽孢杆菌BC26对刺参幼参消化酶、免疫反应和抗病力的影响[J].大连海洋大学学报, 2013, 28(6):568-572.
[18] XING J, LEUNG M F, CHIA F S.Quantitative analysis of phagocytosis by amebocytes of a sea cucumber, Holothuria leucospilota[J].Invertebrate Biology, 1998, 117(1):67-74.
[19] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry, 1976, 72(1/2):248-254.
[20] SONG Y L, HSIEH Y T.Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances:analysis of reactive oxygen species[J].Developmental and Comparative Immunology, 1994, 18(3):201-209.
[21] MACEY B M, COYNE V E.Colonization of the gastrointestinal tract of the farmed South African abalone Haliotis midae by the probionts Vibrio midae SY9, Cryptococcus sp.SS1, and Debaryomyces hansenii AY1[J].Marine Biotechnology, 2006, 8(3):246-259.
[22] SHARIFUZZAMAN S M, AL-HARBI A H, AUSTIN B.Characteristics of growth, digestive system functionality, and stress factors of rainbow trout fed probiotics Kocuria SM1 and Rhodococcus SM2[J].Aquaculture, 2014, 418/419:55-61.
[23] BROWN M R, BARRETT S M, VOLKMAN J K, et al.Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture[J].Aquaculture, 1996, 143(3/4):341-360.
[24] 徐哲, 吴斌, 杨志平.梅奇酵母C14 菌株的生化组成分析[J].中国水产, 2017(6):111-112.
[25] MACEY B M, COYNE V E.Improved growth rate and disease resistance in farmed Haliotis midae through probiotic treatment[J].Aquaculture, 2005, 245(1/2/3/4):249-261.
[26] WANG J H, ZHAO L Q, LIU J F, et al.Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus[J].Fish and Shellfish Immunology, 2015, 43(2):330-336.
[27] 杨志平, 徐哲, 周倩, 等.饵料中添加海洋红酵母(Rhodotorula sp.)C11对幼参消化酶及免疫反应的影响[J].渔业科学进展, 2015, 36(6):107-112.
[28] 常杰.对虾和刺参敏感免疫学指标的筛选和评价[D].青岛:中国海洋大学, 2010.
[29] ZHAO Y C, MA H M, ZHANG W B, et al.Effects of dietary β-glucan on the growth, immune responses and resistance of sea cucumber, Apostichopus japonicus against Vibrio splendidus infection[J].Aquaculture, 2011, 315(3/4):269-274.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

混合益生酵母菌对刺参幼参生长、消化酶活力和免疫反应的影响