首页 >  广东海洋大学学报 >  巨蛎属牡蛎DNA序列的比较及鉴定

2020, 40(1): 29-37. doi: 10.3969/j.issn.1673-9159.2020.01.005

巨蛎属牡蛎DNA序列的比较及鉴定

1. 广西壮族自治区水产科学研究院;

2. 广西水产遗传育种与健康养殖重点实验室, 广西 南宁 530021

收稿日期:2019-04-09

基金项目:   广西创新驱动发展专项资金项目(桂科AA17204088-1);农业基础性长期性科技工作国家渔业科学数据中心观测检测任务(ZX08S211664) 

关键词: 巨砺属牡蛎 , DNA条形码 , 线粒体DNA , 核糖体RNA基因

Comparison and Identification of DNA Sequences of Oysters in the Genus Crassostrea

1. Guangxi Academy of Fishery Sciences;

2. Key Laboratory of Aquatic Genetic Breeding and Health Cultivation of Guangxi, Nanning 530021, China

Received Date:2019-04-09

Keywords: Oysters of the genus Crassostrea , DNA barcodes , mitochondrial DNA , ribosomal RNA gene

[目的] 了解巨砺属牡蛎的系统关系和种类区分。[方法] 对我国沿海分布的7种巨砺属牡蛎(香港牡蛎、有明牡蛎、熊本牡蛎、岩牡蛎、艾氏牡蛎、太平洋牡蛎、葡萄牙牡蛎)的线粒体DNA片段(COI、12S、16S和tRNAs),以及核糖体RNA基因转录间隔子序列(ITS-1、ITS-2和ITS)进行分子系统学研究。[结果] 无论种间或种内,tRNAs序列差异最大,亚种内TS1序列差异最大;tRNAs和COI序列较其它序列变异更快,种间变异与种内变异之间有明显的条形码间隙;12S、16S、ITS和ITS2的种间变异与种内变异无重叠及条形码间隙;ITS1的种间变异与种内变异出现重叠。在亚种层面,12S、ITS、ITS1和ITS2的亚种间变异与亚种内变异出现重叠;16S的亚种间变异与亚种内变异无重叠及条形码间隙;tRNAs与COI序列亚种间变异与亚种内变异之间有明显的条形码间隙,有利于区分亚种。[结论] tRNAs和COI序列可用于种及亚种的鉴定。

[Objective] In order to understand the phylogenetic relationship and species distinction of oysters in the genus Crassostrea, finding fast and effective species identification methods by analyzing the sequence alignment of 7 gene fragments were used.[Method] Molecular phylogenetics to mitochondrial DNA and internal transcribed spacers of ribosomal RNA genes from Crassostrea hongkongensis, Crassostrea ariakensis, Crassostrea sikamea, Crassostrea nippona, Crassostrea iredalei, Crassostrea gigas gigas, and Crassostrea gigas angulata were investigated to differentiate the species.[Result] Comparison of the inter-and intra-sub-specific sequence divergence revealed that tRNAs presented the most divergent inter-subspecific variations and TS1 was the most divergent intra-subspecific variations. The tRNAs and COI represented the highest mutational rate and distinct barcoding gap, and could be used to differentiate the species. The 12S, 16S, ITS, and ITS2 sequences did not overlap or present a barcoding gap. Similarly, the ITS1 sequences overlapped, but did not present a barcoding gap. Therefore, it could not be used to differentiate the species. In the subspecies, the tRNA and COI sequence variations presented distinct barcoding gaps, facilitating the differentiation of subspecies. None of the remaining sequences overlapped or presented barcoding gaps.[Conclusion] The mitochondrial tRNAs and COI could be used for species/subspecies identification. These findings reveal the phylogenetic relationships among the oysters and differentiate different oyster species, which could further guide the genetic improvement of oysters and promote corresponding resource management and protection.

参考文献

[1] CHÁVEZ-VILLALBAJ, HERNÁNDEZ-IBARRA A, LÓPEZ-TAPIA M R, et al. Prospective culture of the Cortez oyster Crassostrea corteziensis from northwestern Mexico:growth, gametogenic activity, and condition index[J]. Journal of Shellfish Research, 2008, 27(4):711-720.
[2] ZARKASI K Z, NAZARI T F. Molecular characterisation of microbial diversity associated with oysters within a commercial oyster farm[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2018, 18:191-197.
[3] RUESINK J L, LENIHAN H S, Trimble A C, et al. Introduction of non-native oysters:ecosystem effects and restoration implications[J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36(1):643-689.
[4] GUNTER G. The generic status of living oysters and the scientific name of the common American species[J]. American Midland Naturalist, 1950, 43(2):438-449.
[5] 刘君.双壳贝类DNA分类:贻贝科和牡蛎科DNA条形码及栉江珧隐存种研究[D].青岛:中国海洋大学, 2012.
[6] BOUDRY P, HEURTEBISE S, SYLVIE L. Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and Crassostrea angulata specimens:a new oyster species in Hong Kong?[J]. Aquaculture, 2003, 228(1):15-25.
[7] WANG H, GUO X, ZHANG G, et al. Classification of jinjiang oysters Crassostrea rivularis (Gould, 1861) from China, based on morphology and phylogenetic analysis[J]. Aquaculture, 2004, 242(1-4):137-155.
[8] 孔晓瑜.栉孔扇贝和牡蛎的遗传多样性研究[D].青岛:中国海洋大学, 2004.
[9] 陈琳琳.几种双壳贝类ITS区序列分析与遗传多样性研究[D].青岛:中国海洋大学, 2004.
[10] KLINBUNGA S, KHAMNAMTONG N, TASSANAKAJON A, et al. Molecular genetic identification tools for three commercially cultured oysterrs (Crassostrea belcheri, Crassostrea iredalei, andSaccostrea cucullata) in Thailand[J]. Marine Biotechnology (New York), 2003, 5(1):27-36.
[11] MAZON-SUASTEGUI J M, FERNANDEZ N T, VALENCIA I L, et al. 28S rDNA as an alternative marker for commercially important oyster identification[J]. Food Control, 2016, 66:205-214.
[12] CORDES J F, XIAO J, REECE K S. Discrimination of nine Crassostrea oysterspecies based upon restriction fragment-length polymorphism analysis of nuclear and mitochondrial DNA markers[J]. Journal of Shellfish Research, 2008, 27(5):1155-1161.
[13] DIAZ E, REBORDINOS L, CROSS I. Species idenTification of Crassostrea and Ostrea oysters by polymerase chain reaction amplification of the 5S rRNA gene[J]. Journal of Aoac International, 2006, 89(1):144-148.
[14] LAM K, MORTON B. Mitochondrial DNA and morphological identification of a new species of Crassostrea (Bivalvia:Ostreidae) cultured for centuries in the Pearl River Delta, Hong Kong, China[J]. Aquaculture, 2003, 228(1):1-13.
[15] LAM K, MORTON B. Morphological and mitochondrial-DNA analysis of the Indo-West Pacific rock oysters (Ostreidae:Saccostrea species)[J]. Journal of Molluscan Studies, 2006, 72(3):235-245.
[16] 杨叶欣,王庆恒,杜晓东,等.近江牡蛎两个野生种群的遗传多样性分析[J].广东海洋大学学报, 2009, 29(6):16-22.
[17] 李咏梅,陈秀荔,赵永贞,等.钦州湾牡蛎线粒体16S rRNA和COⅠ基因片段的序列变异分析[J].广东海洋大学学报, 2009, 29(3):11-18.
[18] WANG J F, XU F, LI L, et al. A new identification method for five species of oysters in genus Crassostrea from China based on high-resolution melting analysis[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(2):419-425.
[19] 唐伯平,周开亚,宋大祥.核rDNA ITS区序列在无脊椎动物分子系统学研究中的应用[J].动物学杂志, 2002, 37(4):37-73.
[20] CHU K H, LI C P, HO H Y. The first internal transcribed spacer (ITS-1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in Crustacea[J]. Marine Biotechnology, 2001, 3(4):355-361.
[21] YU E T, JUINIO-MEÑ, EZ M A, et al. Sequence variation in the ribosomal DNA internal transcribed spacer of Tridacna crocea[J]. Marine Biotechnology, 2000, 2(6):511-516.
[22] 武宝生,司李真,孔晓瑜,等. 5科11种鱼类ITS1特征分析及其在系统分类研究中的适用性[J].水产学报, 2018, 42(4):465-475.
[23] 赵玲敏,谢潮添,陈昌生,等. 5.8S rDNA-ITS区片段的序列分析在坛紫菜种质鉴定中的应用[J].水产学报, 2009, 33(6):940-948.
[24] 毕燕会,杨旭,周志刚.不同地理种群瓦氏马尾藻ITS序列特征及其系统进化分析[J].水产学报, 2014, 38(9):1335-1344.
[25] 谢子强,廖宝林,肖宝华,等.运用ITS基因分析大鹏半岛海域石珊瑚系统发育关系[J].广东海洋大学学报, 2017, 37(4):8-15.
[26] 彭敏,陈秀荔,蒋伟明,等.醋酸铵法提取卵形鲳鲹基因组DNA[J].天津农业科学, 2011(1):114-117.
[27] KIMURA M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution,1980, 16(2):111-120.
[28] LAHAYE R,BANK M V D, BOGARIN D, et al. DNA barcoding the floras of biodiversity hotspots[J]. Proceedings of the National Academy of Sciences, 2008, 105(8):2923-2928.
[29] LAPEˋGUE S, BATISTA FM, HEURTEBISE S, et al. Evidence for the presence of the Portuguese oyster, Crassostrea angulata, in northern China[J]. Journal of Shellfish Research,2004, 23:759-763.
[30] LÓPEZ-FLORES I, HERRÁN R, GARRIDO-RAMOS M A, et al. The molecular phylogeny of oysters based on a satellite DNA related to transposons[J]. Gene, 2004, 339:181-188.
[31] REECE K S, CORDES J F, STUBBS J B, et al. Molecular phylogenies help resolve taxonomic confusion with Asian Crassostreaoyster species[J]. Marine Biology (Berlin), 2008, 153(4):709-721.
[32] WANG H, QIAN L, LIU X, et al. Classification of a common cupped oyster from southern China[J]. Journal of Shellfish Research, 2010, 29(4):857-866.
[33] 黄海.石斛属植物DNA条形码序列的筛选[J].热带作物学报, 2010, 31(10):1769-1777.
[34] SONG J, YAO H, LI Y, et al. Authentication of the family polygonaceae in Chinese pharmacopoeia by DNA barcoding technique[J]. Journal of Ethnopharmacology, 2009, 124(3):0-439.
[35] 王柯,陈科力,刘震,等.锦葵科植物DNA条形码通用序列的筛选[J].植物学报, 2011, 46(3):276-284.
[36] HEBERT P D N, RATNASINGHAM S, DE WAARD J R. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society B:Biological Sciences, 2003, 270(Suppl_1):S96-S99.
[37] MEIER R, ZHANG G, ALI F. The use of mean instead of smallest interspecific distances exaggerates the size of the "Barcoding Gap" and leads to misidentification[J]. Systematic Biology, 2008, 57(5):809-813.
[38] 姚娜,谭嘉力,赖志强,等.用ITS序列识别牧草种质资源[J].基因组学与应用生物学, 2014, 33(1):141-144.
[39] 叶婵娟,杨妙贤,刘文,等.猕猴桃DNA条形码标记的筛选[J].北方园艺, 2015(24):79-83.
[40] 王青. AFLP技术和线粒体序列分析在我国巨蛎属牡蛎系统分类中的应用[D].青岛:中国海洋大学, 2004.
[41] 刘凯凯,李琪.岩牡蛎和长牡蛎的线粒体DNA PCR-RFLP快速鉴定[J].中国海洋大学学报(自然科学版), 2018, 48(S2):20-25.
[42] FOLMER O, BLACK M, HOEH W, et al. DNA primers for amplification ofmitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 1994, 3:294-299.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

巨蛎属牡蛎DNA序列的比较及鉴定