首页 >  大连海洋大学学报 >  急性温度胁迫对虹鳟肝脏代谢酶活性及生长相关基因表达的影响

2014, 29(6): 566-571. doi: 10.3969/J.ISSN.2095-1388.2014.06.005

急性温度胁迫对虹鳟肝脏代谢酶活性及生长相关基因表达的影响

中国海洋大学 海水养殖教育部重点实验室, 山东 青岛 266003

通讯作者: 温海深, wenhaishen@ouc.edu.cn

收稿日期:2014-03-29

基金项目:   国家公益性行业(农业)科研专项(201003055) 

关键词: 虹鳟 , 温度胁迫 , 血清酶 , 血清激素 , 生长激素受体 , 类胰岛素生长因子

Effects of acute temperature stress on metabolic enzyme activity and gene expression related to growth in rainbow trout Oncorhynchus mykiss

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China

Corresponding author: WEN Hai-shen, wenhaishen@ouc.edu.cn

Received Date:2014-03-29

Keywords: Oncorhynchus mykiss , temperature stress , serum enzyme , serum hormone , GHR , IGF

为探究急性温度胁迫对虹鳟Oncorhynchus mykiss肝脏代谢酶和部分生长调控基因表达的影响,采用血清生化分析仪测定了低温(6℃)和高温(24℃)胁迫下虹鳟(体质量为240 g±18 g)血清中谷草转氨酶(AST)、谷丙转氨酶(ALT)和碱性磷酸酶(ALP)的活性,通过放射免疫法测定了血清类胰岛素生长因子1(IGF-1)的含量,采用实时定量法测定了肝脏中GHR1、IGF-1和IGF-2的表达量。结果表明:温度胁迫2 h后,低温和高温两个处理组鱼的AST活性和高温组的ALT活性均呈先升高后降低的趋势,均在恢复6 h时达到最大值,而低温组鱼的ALT活性在胁迫后恢复0 h时就显著升高(P<0.05),随后逐渐降低至对照组水平;低温组鱼的ALP活性在胁迫后显著降低(P<0.05),并在48 h的恢复期间始终维持在较低水平,而高温组鱼的ALP活性比对照组略有降低(P>0.05);低温组鱼的血清IGF-1激素含量在恢复12 h后呈上升趋势,并在48 h时恢复至对照组水平,而高温组血清IGF-1含量在胁迫后始终处于较低水平;两个处理组肝脏中,GHR1基因表达量比对照组略有降低(P>0.05),而IGF-1和IGF-2基因表达量均呈先降低后升高的趋势,且IGF-2表达量下降更明显,并在恢复12 h时达到最低值。研究表明:温度胁迫后,虹鳟血清转氨酶活性降低,肝脏受到损伤;血清IGF-1激素含量下降,肝脏中GHR1、IGF-1和IGF-2基因表达量均低于对照组;高温组各指标变化较大,说明属于冷水鱼类的虹鳟受高温影响更为显著。

Activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined in rainbow trout Oncorhynchus mykiss with body weight of (240 g±18 g) exposed to low (6℃) and high temperature(24℃) by a BS-180 biochemical analyzer, and levels of serum insulinlike growth factor-1 (IGF-1) and the expression of GHR1, IGF-1 and IGF-2 in liver were detected by radioimmunoassay and by real-time quantification.The activities of serum AST and ALT were shown to be increased first and then decreased, the maximum at 6 h and significantly higher in the lower temperature group for ALT even at 0 h(P<0.05), finally being reduced to the level in the control group.The ALP activity was significantly decreased at 0 h (P<0.05), and then maintained low level in low temperature group, while the ALP activity was decreased slightly in high temperature group.The serum IGF-1 level was found increase at 0 h and then recovery to the level in the control group at low temperature exposure.In the high temperature exposure, however, the serum IGF-1 level was kept at low level, without significant difference (P>0.05).The expression of IGF-1 and IGF-2 genes was shown to be decreased firstly and then increased, the minimum at 12 h, significantly lower for IGF-2 gene.The findings revealed that acute temperature led to harmful liver and to increase in AST and ALT activities and to decrease in ALP activity; meanwhile serum IGF-1 level and the expression of GHR1, IGF-1 and IGF-2 also were decreased, indicating that acute temperature may affect the expression of growth related genes.

参考文献

[1] Blank J M, Morrissette J M, Landeira-Fernandez A M, et al. In situ cardiac performance of Pacific bluefin tuna hearts in response to a-cute temperature change[J]. Experimental Biology, 2004, 207:881-890.
[2] Picha M E, Strom C N, Riley L G, et al. Plasma ghrelin and growth hormone regulation in response to metabolic state in hybrid striped bass:effects of feeding, ghrelin and insulin-like growth factor-I on in vivo and in vitro GH secretion[J]. General and Comparative Endocrinology,2009,161:365-372.
[3] Wood A W, Duan C, Bern H A. Insulin-like growth factor signaling in fish[J]. International Review of Cytology,2005,243:215-285.
[4] Sánchez J P, Giner J A C, Mingarro M, et al. Overview of fish growth hormone family. New insights in genomic organization and heterogeneity of growth hormone receptors[J]. Fish Physiology and Biochemistry,2002,27:243-258.
[5] Fukamachi S, Meyer A. Evolution of receptors for growth hormone and somatolactin in fish and land vertebrates:lessons from the lungfish and sturgeon orthologues[J]. Mol Evol,2007,65:359-372.
[6] Cao Q P, Duguay S J, Plisetskaya E, et al. Nucleotide sequence and growth hormone-regulated expression of salmon insulin-like growth factor I mRNA[J]. Molecular Endocrinology, 1989, 3:2005-2010.
[7] Cohick W S, Clemmons D R. The insulin-like growth factors[J]. Annual Review of Physiology,1993,55:131-153.
[8] Ayaso E, Nolan C M, Byrnes L. Zebrafish insulin-like growth factor-I:molecular cloning and developmental expression[J]. Mo-lecular and Cellular Endocrinology,2002,191(2):137-148.
[9] Shepherd B S, Sakamoto T, Nishioka R S, et al. Somatotropic ac-tions of the homologous growth hormone (tGH) and prolactin (tPRL177) in the euryhaline teleost, Oreochromis mossambicus[J]. Proc Natl Acad Sci, USA,1997,94:2068-2072.
[10] Baker J, Liu J P, Robertson E J, et al. Role of insulin-like growth factors in embryonic and postnatal growth[J]. Cell,1993,75:73-82.
[11] Reinecke M, Bjornsson B T, Dickho V W W, et al. Growth hor-mone and insulin-like growth factors in fish:where we are and where to go[J]. General and Comparative Endocrinology, 2005, 142(1/2):20-24.
[12] Vong Q P, Chan K M, Cheng C H. Quantification of common carp (Cyprinus carpio) IGF-I and IGF-Ⅱ mRNA by real-time PCR:differential regulation of expression by GH[J]. Endocrinology, 2003,178:513-521.
[13] Chen J Y, Chen J C, Chang C Y, et al. Expression of recombinant tilapia insulin-like growth factor-I and stimulation of juvenile ti-lapia growth by injection of recombinant IGFs polypeptides[J]. Aquaculture,2000,181:347-360.
[14] 王丙莲, 张迎梅, 候亚妮, 等. 铬铅对泥鳅组织转氨酶活性的影响[J]. 兰州大学学报:自然科学版,2006,42(3):67-70.
[15] 江琰, 文克武, 雷远成. 意蜂工蜂酸性磷酸酶的纯化及其酶学特性[J]. 昆虫学报,2004,47(3):310-315.
[16] 曹克驹. 名特水产养殖学[M]. 北京:中国农业出版社,2004:113-114.
[17] Flores A M, Shrimpton J M. Differential physiological and endo-crine responses of rainbow trout, Oncorhynchus mykiss, transferred from fresh water to ion-poor or salt water[J]. General and Com-parative Endocrinology,2012,175:244-250.
[18] Vaglio A, Landriscina C. Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium intoxication[J]. Ec-otoxicology and Environmental Safety,1999,43(1):111-116.
[19] Dela Torre F R, Salibián A, Ferrari L. Biomarkers assessment in juvenile Cyprinus crapio exposed to waterborne cadmium[J]. En-vironmental Pollution,2000,109:277-282.
[20] 陈清西, 陈素丽, 石艳, 等. 长毛对虾碱性磷酸酶性质[J]. 厦门大学学报:自然科学版,1996,35(2):257-261.
[21] Mora S D, Sheikholeslami M R, Wyse E, et al. An assessment of metal contamination in coastal sediments of the Caspian Sea[J]. Mar Pollut Bull,2004,48(1/2):61-77.
[22] Bolton J P, Collie N L, Kawauchi H, et al. Osmoregulatory actions of growth hormone in rainbow trout (Oncorhynchus mykiss)[J]. Endocrinology,1987,112:63-68.
[23] McCormick S D, Regish A, O'Dea M F. Are we missing a miner-alocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+, K+-ATPase activity and isoform mRNA levels in Atlantic salmon[J]. Gen Comp En-docrinol,2008,157:35-40.
[24] Liebert A M, Schreck C B. Effects of acute stress on osmoregula-tion, feed intake, IGF-I, and cortisol in yearling steelhead trout (Oncorhynchus mykiss) during seawater adaptation[J]. General and Comparative Endocrinology,2006,148:195-202.
[25] Bradley K F, Breves J P, Davis L K, et al. Tissue-specific regula-tion of the growth hormone/insulin-like growth factor axis during fasting and re-feeding:importance of muscle expression of IGF-I and IGF-Ⅱ mRNA in the tilapia[J]. General and Comparative Endocrinology,2010,166:573-580.
[26] Ayson F G, de Jesus-Ayson E G T, Takemura A. mRNA expres-sion patterns for GH, PRL, SL, IGF-I and IGF-Ⅱ during altered feeding status in rabbitfish, Siganus guttatus[J]. General and Comparative Endocrinology,2007,150:196-204.
[27] Matejka G L. Expression of GH receptor, IGF-I recepter and IGF-I mRNA in the kidney and liver of rats recovering from uni-lateral renal ischemia[J]. Growth Hormone and IGF Research, 1988,8:77-82.
[28] Pierce A L, Dickey J T, Larsen D A, et al. A quantitative real time RT-PCR assay for salmon IGF-I mRNA and its application in the study of GH regulation of IGF-I gene expression in primary culture of salmon hepatocytes[J]. General and Comparative En-docrinology,2004,135:401-411.
[29] Duan C. Nutritional and developmental regulation of insulin-like growth factors in fish[J]. J Nutrition,1998,128:306-314.
[30] Larsen D A, Beckman B R, Dickhoff W W. The effect of low tem-perature and fasting during the winter on metabolic stores and en-docrine physiology (insulin, insulin-like growth factor-I, and thyroxine) of coho salmon, Oncorhynchus kisutch[J]. General and Comparative Endocrinology,2001,123:308-323.
[31] Peterson B C, Waldbieser G C, Bilodeau L. IGF-Ⅰ and IGF-Ⅱ mRNA expression in slow and fast growing families of USDA 103 channel catfish (Ictalurus punctatus)[J]. Comparative Biochem-istry and Physiology, Part A,2004,139:317-323.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

急性温度胁迫对虹鳟肝脏代谢酶活性及生长相关基因表达的影响