首页 >  中国水产科学 >  北太平洋小型中上层鱼类资源对气候–海洋变化的响应研究进展

2020, 27(11): 1379-1392. doi: 10.3724/SP.J.1118.2020.20042

北太平洋小型中上层鱼类资源对气候–海洋变化的响应研究进展

1. 上海海洋大学海洋科学学院, 上海 201306;

2. 上海海洋大学国家远洋渔业工程技术研究中心, 上海 201306;

3. 大洋渔业资源可持续开发教育部重点实验室, 上海海洋大学, 上海 201306

收稿日期:2020-06-15
修回日期:2020-07-03

基金项目:   国家重点研发计划项目(2019YFD0901503). 

关键词: 小型中上层鱼类 , 气候-海洋指数 , 栖息地变化 , 资源丰度 , 北太平洋

Review on the response of small pelagic fishery resources in the North Pacific to climate-ocean changes

1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;

2. National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China;

3. Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education;Shanghai Ocean University, Shanghai 201306, China

Received Date:2020-06-15
Accepted Date:2020-07-03

Keywords: small pelagic fish , climate-oceanic index , habitat change , resource abundance , North Pacific

小型中上层鱼类是北太平洋海域重要的渔业资源,具有生命周期短、生长速度快、高集群性等特点,其资源年间波动显著,且受气候-海洋变化的影响。本文围绕秋刀鱼(Coloabis saira)、鲣(Katsuwonus pelamis)、鲐(Scomber japonicus)、鳀(Engraulis japonious)、竹䇲鱼(Trachurus japonicus)、沙丁鱼(Sardinops sagax)6种主要的小型中上层鱼类,回顾了厄尔尼诺-南方涛动(El Niño/La Niña-southern oscillation,ENSO)、太平洋年代际振荡(the Pacific decadal oscillation,PDO)、黑潮-亲潮(Kuroshio-Oyashio,KR-OY)等关键气候-海洋指数的特点及对鱼类栖息地环境和资源变动的影响。概括了气候-海洋变化对小型中上层鱼类的洄游分布和资源丰度的直接影响过程,以及对亲体繁殖产卵、仔稚体成活率和资源量波动间接的滞后影响过程。建议:(1)在多种气候-海洋指数基础上添加种群动态过程、捕捞方式系数、自然死亡率等参数构建生物量动态模型,揭示气候-海洋变化对渔业资源量的影响过程;(2)结合北太平洋涛动(North Pacific oscillation,NPO)、北极涛动(Arctic oscillation,AO)、北太平洋环流振荡(North Pacific gyre oscillation,NPGO)等其他北太平洋主要气候,基于物理海洋模型及空间耦合水动力学模型研究大尺度海流、中尺度涡旋对小型中上层鱼类影响。

Small pelagic fishes are an important fishery resource in the Pacific Ocean. Generally, they have the characteristics of a short life cycle, fast growth rate, and high clustering, etc. Their resources fluctuate significantly from year to year and are affected by climate-ocean changes. In this study, the characteristics of the key climate-oceanic indexes, such as El Niño/La Niña-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Kuroshio-Oyashio (KR-OY) and their influence on habitat environment and fish resource variations were reviewed, focusing on six main small pelagic fishes, including saury (Cololabis saira), skipjack (Katsuwonus pelamis), chub mackerel (Scomber japonicus), anchovy (Engraulis japonicus), jack mackerel (Trachurus japonicus), and sardine (Sardina pilchardus). The climate-oceanic changes that directly influence migration distribution and resource abundance of small pelagic fishes and indirectly delay the influence on parental reproduction and spawning, larval and juvenile survival rate, and resource fluctuation were summarized. The review included the following suggestions:(1) the construction of a biomass dynamic model by adding parameters, such as population dynamic processes, fishing mode coefficients, and natural mortality rates based on several climate-ocean indexes to reveal the influence of climate-ocean change on fishery resource quantity; (2) analyzing the effects of large-scale ocean currents and mesoscale vortexes on small pelagic fish based on physical ocean models and spatially coupled hydrodynamics models, combined with other major north Pacific climates such as North Pacific Oscillation (NPO), North Pacific Gyre Oscillation (NPGO), and Arctic Oscillation (AO).

参考文献

[1] Moffitt C M, Cajas-Cano L. Blue growth:The 2014 FAO state of world fisheries and aquaculture[J]. Fisheries, 2014, 39(11):552-553.
[2] 朱耀光. 中上层鱼类的若干特点[J]. 福建水产, 1988, 10(3):7-9.Zhu Y G. Several characteristics of pelagic fish[J]. Journal of Fujian Fisheries, 1988, 10(3):7-9.
[3] 何学武. 中上层小型鱼类的开发现状与前景[J]. 现代渔业信息, 1989, 4(Z2):42-43, 41.He X W. Development status and prospect of pelagic small fish[J]. Modern Fisheries Information, 1989, 4(Z2):42-43, 41.
[4] Food Agriculture Organization. The State of World Fisheries and Aquaculture 2018[R]. Roma:FAO, 2018:1-209.
[5] 石永闯, 陈新军. 小型中上层海洋鱼类资源评估研究进展[J]. 海洋渔业, 2019, 41(1):118-128.Shi Y C, Chen X J. A review of stock assessment methods on small pelagic fish[J]. Marine Fisheries, 2019, 41(1):118-128.
[6] Oozeki Y, Watanabe Y, Kitagawa D. Environmental factors affecting larval growth of Pacific saury, Cololabis saira, in the northwestern Pacific Ocean[J]. Fisheries Oceanography, 2004, 13:44-53.
[7] Itoh S, Yasuda I, Nishikawa H, et al. Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western North Pacific estimated via numerical particle-tracking experiments[J]. Fisheries Oceanography, 2009, 18(2):118-133.
[8] Matić-Skoko S, Ferri J, Škeljo F, et al. Age, growth and validation of otolith morphometrics as predictors of age in the forkbeard, Phycis phycis (Gadidae)[J]. Fisheries Research, 2011, 112(1-2):52-58.
[9] Peck M A, Reglero P, Takahashi M, et al. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations[J]. Progress in Oceanography, 2013, 116:220-245.
[10] 刘瑜, 郑全安, 李晓峰. 西北太平洋公海秋刀鱼渔场分布与海表温度锋的相关关系[J]. 水产学报, 2018, 42(12):1916-1926.Liu Y, Zheng Q A, Li X F. Relationship between Cololabis saira fishery distribution patterns and sea surface temperature front in the Northwestern Pacific Ocean[J]. Journal of Fisheries of China, 2018, 42(12):1916-1926.
[11] 李非, 陈新军, 朱清澄, 等. 不同气候模态下西北太平洋秋刀鱼海况特征分析[J]. 南方水产科学, 2018, 14(3):20-28.Li F, Chen X J, Zhu Q C, et al. Characteristic analysis of fishing condition of saury in Northwest Pacific under different climate regimes[J]. South China Fisheries Science, 2018, 14(3):20-28.
[12] Asch R G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):E4065-E4074.
[13] Post E. Large-scale climate synchronizes the timing of flowering by multiple species[J]. Ecology, 2003, 84(2):277-281.
[14] Fiechter J, Rose K A, Curchitser E N, et al. The role of environmental controls in determining sardine and anchovy population cycles in the California Current:Analysis of an end-to-end model[J]. Progress in Oceanography, 2015, 138:381-398.
[15] Tian Y J, Ueno Y, Suda M, et al. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century[J]. Journal of Marine Systems, 2004, 52(1-4):235-257.
[16] Cao J, Chen X J, Chen Y, et al. Influence of surface oceanographic variability on abundance of the western winter-spring cohort of neon flying squid Ommastrephes bartramii in the NW Pacific Ocean[J]. Marine Ecology Progress Series, 2009, 381:119-127.
[17] 张衡, 张胜茂. 东南太平洋智利竹筴鱼渔场及单位捕捞努力量的时空分布[J]. 生态学杂志, 2011, 30(6):1142-1146.Zhang H, Zhang S M. Spatiotemporal distribution pattern of Chilean jack mackerel (Trachurus murphyi) fishing grounds and catch yield per unit effort in Southeast Pacific Ocean[J]. Chinese Journal of Ecology, 2011, 30(6):1142-1146.
[18] Hallett T B, Coulson T, Pilkington J G, et al. Why large-scale climate indices seem to predict ecological processes better than local weather[J]. Nature, 2004, 430(6995):71-75.
[19] Kwon Y O, Alexander M A, Bond N A, et al. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction:A review[J]. Journal of Climate, 2010, 23(12):3249-3281.
[20] Tian Y J, Akamine T, Suda M. Variations in the abundance of Pacific saury (Cololabis saira) from the northwestern Pacific in relation to oceanic-climate changes[J]. Fisheries Research, 2003, 60(2-3):439-454.
[21] McCreary J P Jr, Anderson D L T. An overview of coupled ocean-atmosphere models of El Niño and the southern ocsillation[J]. Journal of Geophysical Research:Oceans, 1991, 96(S01):3125-3150.
[22] Hare S R, Mantua N J. Empirical evidence for North Pacific regime shifts in 1977 and 1989[J]. Progress in Oceanography, 2000, 47(2-4):103-145.
[23] 龚道溢. 大尺度大气环流变化及其对北半球冬季温度的影响[J]. 地学前缘, 2000, 7(S2):203-208.Gong D Y. Large-scale atmospheric circulation and its influence on winter temperature in the northern hemisphere[J]. Earth Science Frontiers, 2000, 7(S2):203-208.
[24] Thompson D W J, Wallace J M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9):1297-1300.
[25] di Lorenzo E, Schneider N, Cobb K M, et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008, 35(8):L08607.
[26] Joh Y, di Lorenzo E. Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the northeast Pacific[J]. Geophysical Research Letters, 2017, 44(22):11663-11671.
[27] Hurlburt H E, Wallcraft A J, Schmitz W J Jr, et al. Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean[J]. Journal of Geophysical Research:Oceans, 1996, 101(C1):941-976.
[28] 李崇银, 穆穆, 周广庆, 等. ENSO机理及其预测研究[J]. 大气科学, 2008, 32(4):761-781.Li C Y, Mu M, Zhou G Q, et al. Mechanism and Prediction Studies of the ENSO[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4):761-781.
[29] Lynn R J, Bograd S J. Dynamic evolution of the 1997-1999 El Niño-La Niña cycle in the southern California current system[J]. Progress in Oceanography, 2002, 54(1-4):59-75.
[30] Wang C Z, Fiedler P C. ENSO variability and the eastern tropical Pacific:A review[J]. Progress in Oceanography, 2006, 69(2-4):239-266.
[31] 杨香帅, 邹晓荣, 徐香香, 等. ENSO现象对东南太平洋智利竹䇲鱼资源丰度及其渔场变动的影响[J]. 上海海洋大学学报, 2019, 28(2):290-297.Yang X S, Zhou X R, Xu X X, et al. Effects of ENSO on abundance index and spatial-temporal change of Chilean jack mackerel in the South[J]. Journal of Shanghai Ocean University, 2019, 28(2):290-297.
[32] Kasai A, Komatsu K, Sassa C, et al. Transport and survival processes of eggs and larvae of jack mackerel Trachurus japonicus in the East China Sea[J]. Fisheries Science, 2008, 74(1):8-18.
[33] Sassa C, Takahashi M, Nishiuchi K, et al. Distribution, growth and mortality of larval jack mackerel Trachurus japonicus in the southern East China Sea in relation to oceanographic conditions[J]. Journal of Plankton Research, 2014, 36(2):542-556.
[34] Lima M, Naya D E. Large-scale climatic variability affects the dynamics of tropical skipjack tuna in the Western Pacific Ocean[J]. Ecography, 2011, 34(4):597-605.
[35] Lehodey P, Bertignac M, Hampton J, et al. El Niño southern oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6652):715-718.
[36] 周甦芳. 厄尔尼诺-南方涛动现象对中西太平洋鲣鱼围网渔场的影响[J]. 中国水产科学, 2005, 12(6):739-744.Zhou S F. Impacts of the El Niño southern oscillation on skipjack tuna purse-seine fishing grounds in the western and central Pacific Ocean[J]. Journal of Fishery Sciences of China, 2005, 12(6):739-744.
[37] Hiyama Y, Yoda M, Ohshimo S. Stock size fluctuations in chub mackerel (Scomber japonicus) in the East China Sea and the Japan/East Sea[J]. Fisheries Oceanography, 2002, 11(6):347-353.
[38] 苏杭, 陈新军, 汪金涛. 海表水温变动对东、黄海鲐鱼栖息地分布的影响[J]. 海洋学报, 2015, 37(6):88-96.Su H, Chen X J, Wang J T. Influence of sea surface temperature changes on Scomber japonicas habitat in the Yellow Sea and East China Sea[J]. Acta Oceanologica Sinica, 2015, 37(6):88-96.
[39] Sassa C, Takahashi M, Konishi Y, et al. Interannual variations in distribution and abundance of Japanese jack mackerel Trachurus japonicus larvae in the East China Sea[J]. ICES Journal of Marine Science, 2016, 73(4):1170-1185.
[40] Song H, Miller A J, McClatchie S, et al. Application of a data-assimilation model to variability of Pacific sardine spawning and survivor habitats with ENSO in the California Current System[J]. Journal of Geophysical Research:Oceans, 2012, 117(C3):C03009.
[41] Nevárez-Martı́Nez M O, Lluch-Belda D, Cisneros-Mata M A, et al. Distribution and abundance of the Pacific sardine (Sardinops sagax) in the Gulf of California and their relation with the environment[J]. Progress in Oceanography, 2001, 49(1-4):565-580.
[42] 郭爱, 陈新军. ENSO与中西太平洋金枪鱼围网资源丰度及其渔场变动的关系[J]. 海洋渔业, 2005, 27(4):338-342.Guo A, Chen X J. The relationship between ENSO and tuna purse-seine resource abundance and fishing grounds distribution in the Western and Central Pacific Ocean[J]. Marine Fisheries, 2005, 27(4):338-342.
[43] Li G, Zou X R, Chen X J, et al. Standardization of CPUE for Chilean jack mackerel (Trachurus murphyi) from Chinese trawl fleets in the high seas of the Southeast Pacific Ocean[J]. Journal of Ocean University of China, 2013, 12(3):441-451.
[44] 陈云龙. 黄海鳀鱼种群特征的年际变化及越冬群体的气候变化情景分析[D]. 青岛:中国海洋大学, 2014.Chen Y L. Interannual variations in population characteristicsof anchovy (Engraulis japonicus) and redistribution of its wintering stock under climate change scenarios in the Yellow Sea[D]. Qingdao:Ocean University of China, 2014.
[45] 官文江, 陈新军, 李纲. 海表水温和拉尼娜事件对东海鲐鱼资源时空变动的影响[J]. 上海海洋大学学报, 2011, 20(1):102-107.Guan W J, Chen X J, Li G. Influence of sea surface temperature and La Niña event on temporal and spatial fluctuation of chub mackerel (Scomber japonicus) stock in the East China Sea[J]. Journal of Shanghai Ocean University, 2011, 20(1):102-107.
[46] Ormaza-González F I, Mora-Cervetto A, Bermúdez-Martínez R M, et al. Can small pelagic fish landings be used as predictors of high-frequency oceanographic fluctuations in the 1-2 El Niño region?[J]. Advances in Geosciences, 2016, 42:61-72.
[47] 刘尊雷, 袁兴伟, 杨林林, 等. 气候变化对东海北部外海越冬场渔业群落格局的影响[J]. 应用生态学报, 2015, 26(3):901-911.Liu Z L, Yuan X W, Yang L L, et al. Effect of climate change on the fisheries community pattern in the overwintering ground of open waters of northern East China Sea[J]. Chinese Journal of Applied Ecology, 2015, 26(3):901-911.
[48] 陈洋洋, 陈新军. 厄尔尼诺/拉尼娜现象对中西太平洋鲣资源丰度的影响[J]. 上海海洋大学学报, 2017, 26(1):113-120.Chen Y Y, Chen X J. Influence of El Niño/La Niña on the abundance index of skipjack in the Western and Central Pacific Ocean[J]. Journal of Shanghai Ocean University, 2017, 26(1):113-120.
[49] 张孝民. 西北太平洋公海秋刀鱼渔场研究[D]. 上海:上海海洋大学, 2016.Zhang X M. Study on the fishing ground of saury (Cololabis saira) in the Northwest Pacific high seas[D]. Shanghai:Shanghai Ocean University, 2016.
[50] Overland J E, Salo S, Adams J M. Salinity signature of the Pacific Decadal Oscillation[J]. Geophysical Research Letters, 1999, 26(9):1337-1340.
[51] Vimont D J. The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability[J]. Journal of Climate, 2005, 18(12):2080-2092.
[52] Yu W, Chen X J, Chen C S, et al. Impacts of oceanographic factors on interannual variability of the winter-spring cohort of neon flying squid abundance in the Northwest Pacific Ocean[J].Acta Oceanologica Sinica, 2017, 36(10):48-59.
[53] 杨秋明. PDO对夏季江淮地区雨量与太平洋海温年际相关的影响[J]. 海洋科学, 2007, 31(7):43-50.Yang Q M. Effect of PDO on the interannual relationships between summer rainfall in the Yangze River and the Huaihe River valley and SST in the Pacific Ocean[J]. Marine Sciences, 2007, 31(7):43-50.
[54] 刘祝楠, 陈新军. 不同气候模态下西北太平洋秋刀鱼资源丰度预测模型建立[J]. 海洋学报, 2018, 40(6):74-82.Liu Z N, Chen X J. Forecasting model of abundance index of Cololabis saira in the Northwest Pacific under different climate condition[J]. Acta Oceanologica Sinica, 2018, 40(6):74-82.
[55] Wang J T, Chen X J, Chen Y. Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean[J]. Journal of Remote Sensing, 2016, 37(24):6149-6164.
[56] Zhou X, Sun Y, Huang W, et al. The Pacific decadal oscillation and changes in anchovy populations in the Northwest Pacific[J]. Journal of Asian Earth Sciences, 2015, 114:504-511.
[57] Yatsu A. Review of population dynamics and management of small pelagic fishes around the Japanese Archipelago[J]. Fisheries Science, 2019, 85(4):611-639.
[58] Yatsu A, Watanabe T, Ishida M, et al. Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management[J]. Fisheries Oceanography, 2005, 14(4):263-278.
[59] 张良成, 郭爱, 陈新军. 基于气候和环境因子的近海鲐鱼资源评估[J]. 广东海洋大学学报, 2018, 38(1):32-38.Zhang L C, Guo A, Chen X J. Stock assessment of chub mackerel (Scomber japonicus) based on environmental and climatic factors[J]. Journal of Guangdong Ocean University, 2018, 38(1):32-38.
[60] McClatchie S. Sardine biomass is poorly correlated with the Pacific Decadal Oscillation off California[J]. Geophysical Research Letters, 2012, 39(13):L13703.
[61] Francis R C, Hare S R, Hollowed A B, et al. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific[J]. Fisheries Oceanography, 1998, 7(1):1-21.
[62] Takahashi M, Watanabe Y, Kinoshita T, et al. Growth of larval and early juvenile Japanese anchovy, Engraulis japonicus, in the Kuroshio-Oyashio transition region[J]. Fisheries Oceanography, 2001, 10(2):235-247.
[63] Yatsu A, Chiba S, Yamanaka Y, et al. Climate forcing and the Kuroshio/Oyashio ecosystem[J]. ICES Journal of Marine Science, 2013, 70(5):922-933.
[64] Miller A J, Chai F, Chiba S, et al. Decadal-scale climate and ecosystem interactions in the north Pacific Ocean[J]. Journal of Oceanography, 2004, 60(1):163-188.
[65] 陈新军. 关于西北太平洋的柔鱼渔场形成的海洋环境因子的分析[J]. 上海水产大学学报, 1997, 6(4):263-267.Chen X J. An analysis on marine environment factors of fishing ground of ommastrephes bartrami in northwestern Pacific[J]. Journal of Shanghai Fisheries University, 1997, 6(4):263-267.
[66] Jiang W P, Peng L F, Jin T Y, et al. Variability of the Kuroshio extension system in 1992-2013 from satellite altimetry data[J]. Geodesy and Geodynamics, 2017, 8(2):103-110.
[67] 何鹏程, 江静. PDO对西北太平洋热带气旋活动与大尺度环流关系的影响[J]. 气象科学, 2011, 31(3):266-273.He P C, Jiang J. Effect of PDO on the relationships between large scale circulation and tropical cyclone activity over the western north Pacific[J]. Journal of the Meteorological Sciences, 2011, 31(3):266-273.
[68] Mugo R, Saitoh S I, Nihira A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific:A remote sensing perspective[J]. Fisheries Oceanography, 2010, 19(5):382-396.
[69] Chiba S, Aita M N, Tadokoro K, et al. From climate regime shifts to lower-trophic level phenology:Synthesis of recent progress in retrospective studies of the western North Pacific[J]. Progress in Oceanography, 2008, 77(2-3):112-126.
[70] Tian Y J, Akamine T, Suda M. Modeling the influence of oceanic-climatic changes on the dynamics of Pacific saury in the northwestern Pacific using a life cycle model[J]. Fisheries Oceanography, 2004, 13:125-137.
[71] 沈建华, 韩士鑫, 樊伟, 等. 西北太平洋秋刀鱼资源及其渔场[J]. 海洋渔业, 2004, 26(1):61-65.Shen J H, Han S X, Fan W, et al. Saury and fishing grounds in the northwest Pacific[J]. Marine Fisheries, 2004, 26(1):61-65.
[72] 花传祥, 朱清澄, 许巍. 夏季西北太平洋公海秋刀鱼渔场时空分布[J]. 齐鲁渔业, 2010, 27(10):10-13.Hua C X, Zhu Q C, Xu W. Fishing ground distribution of cololabis saira in the Northwestern Pacific of summer[J]. Shandong Fisheries, 2010, 27(10):10-13.
[73] Watanabe Y, Kurita Y, Noto M, et al. Growth and survival of Pacific saury Cololabis saira in the Kuroshio-Oyashio transitional waters[J]. Journal of Oceanography, 2003, 59(4):403-414.
[74] Qiu B, Miao W F. Kuroshio path variations south of Japan:Bimodality as a self-sustained internal oscillation[J]. Journal of Physical Oceanography, 2000, 30(8):2124-2137.
[75] Sugimoto T, Kobayashi M. Numerical studies on the influence of the variations of the Kuroshio Path on the transport of fish eggs and larvae[J]. GeoJournal, 1988, 16(1):113-117.
[76] Chenillat F, Rivière P, Capet X, et al. North Pacific Gyre Oscillation modulates seasonal timing and ecosystem functioning in the California Current upwelling system[J]. Geophysical Research Letters, 2012, 39(1):L01606.
[77] Ceballos L I, Lorenzo E D, Hoyos C D, et al. North Pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems[J]. Journal of Climate, 2009, 22(19):5163-5174.
[78] Asch R G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):E4065-E4074.
[79] Chen S F, Wu R G. Impacts of winter NPO on subsequent winter ENSO:Sensitivity to the definition of NPO index[J]. Climate Dynamics, 2018, 50(1-2):375-389.
[80] Yu J Y, Lu M, Kim S T. A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990[J]. Environmental Research Letters, 2012, 7(3):034025.
[81] Chen S F, Wu R G, Chen W. A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s[J]. Climate Dynamics, 2018, 51(1-2):511-529.
[82] 吕庆平, 路凯程, 张铭. 北太平洋冬季上层海温异常的NPGO模态[J]. 气候与环境研究, 2013, 18(2):210-220.Lü Q P, Lu K C, Zhang M. NPGO mode of the upper sea temperature anomalies in the North Pacific during winter[J]. Climatic and Environmental Research, 2013, 18(2):210-220.
[83] Lin P F, Chai F, Xue H J, et al. Modulation of decadal oscillation on surface chlorophyll in the Kuroshio Extension[J]. Journal of Geophysical Research:Oceans, 2014, 119(1):187-199.
[84] Zhang Z E, Holmes J, Teo S L H. A study on relationships between large-scale climate indices and estimates of North Pacific albacore tuna productivity[J]. Fisheries Oceanography, 2014, 23(5):409-416.
[85] Forchhammer M C, Post E. Using large-scale climate indices in climate change ecology studies[J]. Population Ecology, 2004, 46(1):1-12.
[86] 方舟, 陈洋洋, 陈新军, 等. 基于不同模型研究环境因子对中西太平洋鲣资源丰度的影响[J]. 中国水产科学, 2018, 25(5):1123-1130.Fang Z, Chen Y Y, Chen X J, et al. Influence of environmental factors on the abundance of skipjack tuna (Katsuwonus pelamis) in west-central Pacific Ocean determined using different models[J]. Journal of Fishery Sciences of China, 2018, 25(5):1123-1130.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

北太平洋小型中上层鱼类资源对气候–海洋变化的响应研究进展