首页 >  中国水产科学 >  筏式和底播增养殖模式下魁蚶食物来源的比较研究

2016, 23(6): 1368-1379. doi: 10.3724/SP.J.1118.2016.16025

筏式和底播增养殖模式下魁蚶食物来源的比较研究

1. 中国海洋大学 水产学院, 山东 青岛 266003;

2. 青岛海洋科学与技术国家实验室, 海洋渔业科学与食物产出过程功能实验室, 山东 青岛 266072

通讯作者: 张秀梅, 教授.gaozhang@ouc.edu.cn

收稿日期:2016-01-21
修回日期:2016-04-25

基金项目:   海洋公益性行业科研专项(201405010;201305043)资助. 

关键词: 魁蚶 , 食物来源 , 筏式养殖区 , 底播增殖区 , 稳定同位素分析 , 胃含物分析

Comparative study of food sources of Anadara broughtonii in raft mariculture and bottom sowing proliferation

1. College of Fisheries, Ocean University of China, Qingdao 266003, China;

2. Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266072, China

Corresponding author: ZHANG Xiumei, 教授.gaozhang@ouc.edu.cn

Received Date:2016-01-21
Accepted Date:2016-04-25

Keywords: Anadara broughtonii , food sources , raft mariculture area , bottom sowing proliferation area , stable isotope analysis , stomach content analysis

2014年5月和9月,运用稳定同位素技术和胃含物分析法,比较研究了不同增养殖模式下魁蚶(Anadara broughtonii)的饵料特征差异,以期探讨增养殖魁蚶可能的食物来源。结果显示,魁蚶的δ13C值存在明显的季节差异,在5月,筏养区魁蚶的δ13C值明显低于9月,底播区则表现出相反趋势。5月,两种增养殖模式下魁蚶的δ13C和δ15N值均无明显差异;9月,筏养区魁蚶的δ13C、δ15N值均显著高于底播区。以浮游植物为主的颗粒有机物是筏养区魁蚶的主要食物来源,其贡献率可达61.0%~62.9%,附着微藻是其重要的食物补充(37.2%~39.0%);而底栖微藻则是底播区魁蚶最主要的食物来源,其贡献率达到51.7%(5月)和72.5%(9月)。胃含物分析结果显示,魁蚶主要滤食圆筛藻属(Coscinodiscus)、曲舟藻属(Pleurosigma)、菱形藻属(Nitzschia)和舟形藻属(Navicula)种类。底播模式下魁蚶胃含物组成与底栖微藻群落的相似性系数可达85.30%(5月)和77.20%(9月),表明魁蚶对水体中的微藻具有一定的选择性,以浮游性较弱、且易于下沉的硅藻或底栖硅藻类为主。研究结果可为魁蚶筏式养殖和底播增殖的科学管理提供参考。

Marine coastal ecosystems are commonly used for the aquaculture of suspension-feeding bivalves, such as oyster, scallops and mussels. The food sources for these bivalves often depend on particulate organic matter and benthic microalgae. Recent studies have suggested that attached microalgae and bacteria also become important food sources for suspension-feeding bivalves. Knowledge of the dietary regime of bivalves is crucial for understanding the coastal food web and cultured bivalve management. The ark shell, Anadara broughtonii, is one of the most important commercial bivalve species in China. They are usually cultured both in raft mariculture and bottom sowing proliferation. However, information on the food sources for cultured A. broughtonii is still limited. Based on stable isotope (δ13C and δ15N) and stomach content analysis, this study analyzed the dietary regime of A. broughtonii under two different proliferation and culturing modes in May and September 2014, aimed to approach the potential food sources of A. broughtonii in this area. Results showed that there was a clear seasonal variation in δ13C values of A. broughtonii. The δ13C value in the raft mariculture area (RMA) in May was significantly lower than that in September, but there was an opposite trend in the bottom sowing proliferation area (BSPA). There were no significant differences in δ13C and δ15N values of A. broughtonii under two proliferation and culturing modes in May, but the δ13C and δ15N of A. broughtonii in the RMA were clearly higher than those in the BSPA in September. The POMs, mainly including phytoplankton, were the greatest sources of food in the RMA, with a contribution rate of 61.0%-62.9%, followed by attached microalgae (37.2%-39.0%). Comparatively, benthic microalgae was the most important food source in the BSPA, with a contribution rate of 51.7% in May and 72.5% in September. Stomach content analysis showed that A. broughtonii filter-fed mostly on Coscinodiscus, Pleurosigma, Nitzschia and Navicula. The similarity analysis results indicated the proportional similarity (PS) values between stomach content in the BSPA and the benthic microalgae community were 85.30% in May and 77.20% in September, which may suggest that A. broughtonii show a certain selectivity for diatoms of weaker planktonic habit, which sink easily, and for benthic diatoms. Overall, the results can improve our understanding of the biology of A. broughtonii, and provide theoretical evidence for scientific aquaculture management of suspension-feeding bivalves under these two proliferation and culturing modes.

参考文献

[1] Bergh Ø, Strand Ø. Great scallop, Pecten maximus, research and culture strategies in Norway: a review[J]. Aquaculture International, 2001, 9(4): 305-317.
[2] Mendoza Y, Freites L, Lodeiros C J, et al. Evaluation of biological and economical aspects of the culture of the scal-lop Lyropecten (Nodipecten) nodosus in suspended and bottom culture[J]. Aquaculture, 2003, 221(1): 207-219.
[3] Bricelj V M, Shumway S. Physiology: Energy Acquisition and Utilization[M]//Scallops: Biology, Ecology and Aqua-culture. Amsterdam: Elsevier, 1991, 21: 305-376.
[4] Crocker K M, Passow U. Differential aggregation of dia-toms[J]. Mar Ecol Prog Ser Oldendorf, 1995, 117(1): 249-257.
[5] Aya F A, Kudo I. Isotopic determination of Japanese scallop Patinopecten (Mizuhopecten) yessoensis (Jay) tissues shows habitat-related differences in food sources[J]. J Shellfish Res, 2007, 26(2): 295-302.
[6] 许强, 杨红生, 王红, 等. 桑沟湾养殖栉孔扇贝食物来源研究-脂肪酸标志法[J]. 海洋科学, 2007, 31(9): 78-84.Xu Q, Yang H S, Wang H, et al. Food sources of cultured scallop Chlamys farreri in Sanggou Bay: indicated by fatty acid biomarkers[J]. Marine Sciences, 2007, 31(9): 78-84.
[7] Fukumori K, Oi M, Doi H, et al. Food sources of the pearl oyster in coastal ecosystems of Japan: Evidence from diet and stable isotope analysis[J]. Estu Coast Shellfish Sci, 2008, 76(3): 704-709.
[8] Zhao L, Yan X, Yang F. Food sources of the Manila clam Ruditapes philippinarum in intertidal areas: evidence from stable isotope analysis[J]. Chin J Oceanol Limnol, 2013, 31(4): 782-788.
[9] 窦硕增. 鱼类胃含物分析的方法及其应用[J]. 海洋通报, 1992, 11(2): 28-31.Dou S Z. Fish-stomach content analysis, methods and application[J]. Marine Science Bulletin, 1992, 11(2): 28-31.
[10] 王俊. 魁蚶食性及摄食季节变化的初步研究[J]. 海洋水产研究, 1994, 15: 65-70.Wang J. A preliminary study on feeding habits and seasonal variation of diet of Scapharca broughtonii[J]. Marine Fish-eries Research, 1994, 15: 65-70.
[11] 韩东燕. 胶州湾主要虾虎鱼类摄食生态的研究[D]. 青岛: 中国海洋大学, 2013.Han D Y. Study on feeding ecology of dominate gobiid fishes in Jiaozhou Bay[D]. Qingdao: Ocean University of China, 2013.
[12] Vander Zanden M, Rasmussen J B. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies[J]. Limnol Oceanogr, 2001, 46(8): 2061-2066.
[13] 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013: 161-162.Lin G H. Stable Isotope Ecology[M]. Beijing: Higher Education Press, 2013: 161-162.
[14] Suh Y J, Shin K-H. Size-related and seasonal diet of the manila clam (Ruditapes philippinarum), as determined using dual stable isotopes[J]. Estuar Coast Shellfish Sci, 2013, 135: 94-105.
[15] 郑新庆, 王倩, 黄凌风, 等. 基于碳氮稳定同位素的厦门筼筜湖两种优势端足类食性分析[J]. 生态学报, 2015, 35(23): 7589-7597.Zheng X Q, Wang Q, Huang L F, et al. Feeding habits for two dominant amphipod species in the Yundang Lagoon based on stable carbon and nitrogen isotope analysis[J]. Acta Ecologica Sinica, 2015, 35(23): 7589-7597.
[16] 鹿志创, 田甲申, 王召会, 等. 应用碳氮稳定同位素技术研究江豚(Neophocaena asiaeorientalis ssp. sunameri)食性[J]. 生态学报, 2016, 36(1): 69-76.Lu Z C, Tian J S, Wang Z H, et al. Using stable isotope technique to study feeding habits of the finless porpoise (Neophocaena asiaeorientalis ssp. sunameri)[J]. Acta Ecologica Sinica, 2016, 36(1): 69-76.
[17] Kasim M, Mukai H. Contribution of benthic and epiphytic diatoms to clam and oyster production in the Akkeshiko estuary[J]. J Oceanogr, 2006, 62(3): 267-281.
[18] 王兴林. 魁蚶筏式养殖技术[J]. 中国水产, 1997(3): 31-32.Wang X L. Raft culturing technique of Anadara brough-tonii[J]. China Fisheries, 1997(3): 31-32.
[19] 宋云杰, 郭旭强. 荣成市魁蚶底播增殖可行性探讨[J]. 齐鲁渔业, 2010(8): 53-54.Song Y J, Guo X Q. The practicable discussion of the ark shell Anadara broughtonii sowed in Rongcheng[J]. Shan-dong Fisheries, 2010(8): 53-54.
[20] 国家质量技术监督局. GB 12763-2007海洋调查规范(第6部分): 海洋生物调查[S]. 北京: 中国标准出版社, 2007.The State Bureau of Quality and Technical Supervision. GB 12763-2007. The specification for oceanographic research (Part sixth): survey of marine life[S]. Beijing: Standards Press of China, 2007.
[21] 郑新庆, 黄凌风, 杜建国, 等. 筼筜湖绿潮期间颗粒有机物及沉积有机物的来源研究[J]. 海洋学报, 2013, 35(5): 102-111.Zheng X Q, Huang L F, Du J G, et al. The source of particu-late organic matter and sedimentation organic matter during macroalgal bloom in Yundang Lagoon[J]. Acta Oceanolog-ica Sinica, 2013, 35(5): 102-111.
[22] Bligh E G, Dyer W J. A rapid method of total lipid ex-traction and purification[J]. Can J Biochem Physiol, 1959, 37(8): 911-917.
[23] Jacob U. Stable isotope food web studies a case for stand-ardized sample treatment[J]. Mar Ecol Prog Ser, 2005, 287: 251-253.
[24] Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269.
[25] Whittaker R H. A study of summer foliage insect communi-ties in the Great Smoky Mountains[J]. Ecolog Monogr, 1952, 22: 1-44.
[26] 蔡德陵, 孟凡, 韩贻兵, 等. 13C/12C比值作为海洋生态系统食物网示踪剂的研究——崂山湾水体生物食物网的营养关系[J]. 海洋与湖沼, 1999, 30(6): 671-678.Cai D L, Meng F, Han Y B, et al. Studies on 13C/12C ratios as a tracer for food web in a marine ecosystem-The trophic relations in pelagic food webs in Laoshan Bay[J]. Oceanologia et Limnologia Sinica, 1996, 30(6): 671-678.
[27] Shang X, Zhang G S, Zhang J. Relative importance of vas-cular plants and algal production in the food web of a Spartina-invaded salt marsh in the Yangtze River estuary[J]. Mar Ecol Prog Ser, 2008, 367: 93-107.
[28] Baeta A, Pinto R, Valiela I, et al. δ15N and δ13C in the Mondego estuary food web: seasonal variation in producers and consumers[J]. Mar Environ Res, 2009, 67(3): 109-116.
[29] 郑新庆, 黄凌风, 林荣澄. 环境饵料丰度的季节变化对筼筜湖3种大型底栖动物食性的影响-来自稳定同位素的证据[J]. 海洋学报, 2014, 36(12): 32-40.Zheng X Q, Huang L F, Lin R C. Seasonal shifts in food sources influence feeding habits of three macrozoobenthos species in the Yundang Lagoon: the evidence from stable isotope[J]. Acta Oceanologica Sinica, 2014, 36(12): 32-40.
[30] Jaschinski S, Brepohl D C, Sommer U. Carbon sources and trophic structure in an eelgrass (Zostera marina L.) bed based on stable isotope and fatty acid analyses[J]. Mar Ecol Prog Ser, 2008, 358: 103-114.
[31] Durako M J, Hall M O. Effects of light on the stable carbon isotope composition of the seagrass Thalassia testudinum[J]. Mar Ecol Prog Ser, 1992, 86: 99-101.
[32] Bayne B L, Svensson S. Seasonal variability in feeding behaviour, metabolic rates and carbon and nitrogen balances in the Sydney oyster, Saccostrea glomerata (Gould)[J]. J Exp Mar Biol Ecol, 2006, 332(1): 12-26.
[33] Peharda M, Richardson C A, Mladineo I, et al. Age, growth and population structure of Modiolus barbatus from the Adriatic[J]. Mar Biol, 2007, 151(2): 629-638.
[34] Madurell T, Fanelli E, Cartes J E. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Bale-aric Islands (western Mediterranean)[J]. J Mar Sys, 2008, 71(3): 336-345.
[35] 白富进. 湛江港近江牡蛎中碳氮同位素时空分布及其对无机氮响应的初步研究[D]. 湛江: 广东海洋大学, 2010.Bai F J. Preliminary study the spatial and temporal distribu-tion of carbon and nitrogen isotope in Ostrea rivularis Gould and the response to inorganic nitrogen, Zhanjiang Harbor[D]. Zhanjiang: Guangdong Ocean University, 2010.
[36] Nadon M O, Himmelman J H. Stable isotopes in subtidal food webs: Have enriched carbon ratios in benthic consum-ers been misinterpreted?[J]. Limnol Oceanogr, 2006, 51(6): 2828-2836.
[37] Kanaya G, Nobata E, Toya T, et al. Effects of different feeding habits of three bivalve species on sediment characteristics and benthic diatom abundance[J]. Mar Ecol Prog Ser, 2005, 299: 67-78.
[38] 蔡德陵, 洪旭光, 毛兴华. 崂山湾潮间带食物网结构的碳稳定同位素初步研究[J]. 海洋学报, 2001, 23(4): 41-47.Cai D L, Hong X G, Mao X H. Preliminary studies on trophic structure of tidal zone in the Laoshan Bay by using carbon stable isotope[J]. Acta Oceanologica Sinica, 2001, 23(4): 41-47.
[39] Navarro J M, Widdows J. Feeding physiology of Cerastod-erma edule in response to a wide range of seston concentra-tions[J]. Mar Ecol Prog Ser, 1997, 152: 175-186.
[40] Davies A M, Xing J, Huthnance J M, et al. Models of near-bed dynamics and sediment movement at the Iberian mar-gin[J]. Prog Oceanogr, 2002, 52(2): 373-397.
[41] Doi H, Matsumasa M, Toya T, et al. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses[J]. Estu Coast Shelf Sci, 2005, 64(2): 316-322.
[42] Xu J, Zhang M, Xie P. Stable isotope changes in freshwater shrimps (Exopalaemon modestus and Macrobrachium nipp-onensis): trophic pattern implications[J]. Hydrobiologia, 2008, 605(1): 45-54.
[43] 张欢, 谢平, 吴功果, 等. 日本沼虾与秀丽白虾的营养生态位[J]. 环境科学研究, 2013, 26(1): 22-26.Zhang H, Xie P, Wu G G, et al. Studies on trophic niches of Macrobrachium nipponensis and Exopalaemon modestus[J]. Research of Environment Science, 2013, 26(1): 22-26.
[44] Bunn S E, Davies P M, Winning M. Sources of organic carbon supporting the food web of an arid zone floodplain river[J]. Freshw Biol, 2003, 48(4): 619-635.
[45] Defossez J M, Hawkins A J S. Selective feeding in shellfish: size-dependent rejection of large particles within pseudo-faeces from Mytilus edulis, Ruditapes philippinarum and Tapes decussatus[J]. Mar Biol, 1997, 129(1): 139-147.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

筏式和底播增养殖模式下魁蚶食物来源的比较研究