2015, 22(1): 60-67. doi: 10.3724/SP.J.1118.2015.00159
Keywords: Oncorhynchus mykiss , growth trait , allometry , genetic analysis
采用联合异速生长遗传模型,对中国水产科学研究院黑龙江水产研究所渤海冷水性鱼类试验站培育的F1杂交虹鳟(Oncorhynchus mykiss)和F2杂交虹鳟的体质量和体尺性状异速生长进行了遗传分析,旨在为虹鳟及其他水产动物异速生长的遗传参数估计和实现体质量与体型的同步选育奠定理论基础。首先采用逐步回归分析法选择体尺性状对体质量的异速生长显著的性状,建立最优表型联合静态、动态异速生长指数模型,随后构建了两个用于遗传分析多个静态、动态异速生长的随机回归模型。虹鳟多个体尺性状相对体质量的异速生长遗传分析结果表明,体长与体质量具有较大的异速生长指数,为1.6338,且为正异速生长,而其他体尺性状相对体质量呈现负异速生长;遗传方差大小顺序和表型的偏异速生长指数一致,体宽和背鳍基长的异速生长的遗传相关最大,为-0.8675,其次为体长和体高,为-0.6194,最小的是-0.0217,为体高和体宽。体长与体质量的动态异速生长的加性遗传方差估计值为0.2929。结果表明,虹鳟体质量和主要体尺性状的异速生长是由遗传机制决定的,遗传方差及遗传相关的估计能够用来筛选优良亲本,这为进一步利用异速生长理论指导虹鳟及其他水产动物体质量与体型的同步选育提供了理论基础。
This is the first study to genetically analyze the relative growth of multiple partial body sizes in relation to the entire body size in rainbow trout, Oncorhynchus mykiss. The experimental groups were the first generation hybrid group (F1) and the second generation hybrid group (F2) obtained from the Bohai Cold Water Fish Experimental Station of the Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences. By stepwise regression analysis, we optimized the phenotypic joint static/ontogenetic allometry scaling model to select the significant partial allometry scalings of multiple partial body sizes to entire body size. Two random regression models were constructed to genetically analyze multiple static/ontogenetic allometries. One model embeds the best joint static allometry model into the fixed and additive genetic effects of a simple animal model. The other model considers not only the fixed and additive genetic effects on the best joint ontogenetic allometry model, but also the time dependence of permanent environmental effects in the repeated records animal model. The genetic parameter estimation of multiple allometries can be implemented with restricted maximum likelihood for a random regression model. Application of the models proposed here is illustrated to genetically analyze joint static allometry scalings of multiple body shape traits to body weight and ontogenetic allometry scaling of body lengths to body weights repeatedly observed at different growth times in rainbow trout. The results showed that body length has the largest significant allometric association with body weight, and the order in genetic variances for allometry scalings is likely to be consistent with that of phenotypic partial allometry scalings. The largest genetic correlation for allometry scaling was found to be -0.8675 between body width and dorsal-fin base length, followed by -0.6194 between body length and body depth, while -0.0217 was the minimum value. We estimated additive genetic variance for ontogenetic allometry of the body length to weight ratio as 0.2929. According to this study, the allometries of the morphological traits to body weights not only quantify differences in relative growth between the morphological traits to body weights, but also measure the relative genetic gains of the morphological traits to the body weights by genetic analysis. Thus, the genetic parameter estimation for allometries may be useful for guidance in synchronously improving morphological traits and body weights in rainbow trout. This will help genetic manipulation of body shape as well as genetic improvement of body weight.
[1] | 孙大江, 王炳谦. 鲑科鱼类及其养殖状况[J]. 水产学杂志, 2010, 23(2):56-63. |
[2] | 庞艳红, 孙中武, 尹洪滨, 等. 5个虹鳟群体的生化遗传分析[J]. 水产学报, 2007, 31(4):539-544. |
[3] | Perry G M L, Martyniuk C M, Ferguson M M, et al. Genetic parameters for upper thermal tolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2005, 250(1):120-128. |
[4] | Haffray P, Bugeon J, Pincent C, et al. Negative genetic correlations between production traits and head or bony tissues in large all-female rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture, 2012, 368:145-152. |
[5] | Su G S, Liljedahl L E, Gall G A E. Genetic correlations between body weight at different ages and with reproductive traits in rainbow trout[J]. Aquaculture, 2002, 213(1):85-94. |
[6] | 刘宗岳, 高会江, 谷伟, 等. 基于约束最大似然法对虹鳟生长性状遗传参数的估计[J]. 东北农业大学学报, 2008, 39(5):81-84. |
[7] | 刘宗岳, 高会江, 白秀娟, 等. 应用不同模型估计虹鳟生长性状的遗传参数[J]. 水产学杂志, 2009, 22(1):10-14. |
[8] | 王炳谦, 刘宗岳, 高会江, 等. 应用重复力模型估计虹鳟生长性状的遗传力和育种值[J]. 水产学报, 2009, 33(2):182-187. |
[9] | Huxley J S. Problems of Relative Growth[M]. London:Methuen Press. 1932. |
[10] | Gao H, Liu Y, Zhang T, et al. Statistical models for jointly analyzing multiple allometries[J]. J Theor Biol, 2013, 318:205-209. |
[11] | Lande R. Quantitative genetic analysis of multivariate evolution, applied to brain:Body size allometry[J]. Evolution, 1979:402-416. |
[12] | McGuigan K, Nishimura N, Currey M, et al. Quantitative genetic variation in static allometry in the three spine stickleback[J]. Integr Comp Biol, 2010, 50(6):1067-1080. |
[13] | Li H, Huang Z, Gai J, et al. A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry[J]. PLoS ONE, 2007, 2(11):e1245. |
[14] | Wu R, Hou W. A hyperspace model to decipher the genetic architecture of developmental processes:allometry meets ontogeny[J]. Genetics, 2006, 172(1):627-637. |
[15] | Wu R, Ma C X, Lou X Y, et al. Molecular dissection of allometry, ontogeny, and plasticity:A genomic view of developmental biology[J]. BioScience, 2003, 53(11):1041-1047. |
[16] | Liu Y X, Zhang J, Schaeffer L R, et al. Short communication:Optimal random regression models for milk production in dairy cattle[J]. J Dairy Sci, 2006, 89(6):2233-2235. |
[17] | Schaeffer L R. Application of random regression models in animal breeding[J]. Livest Prod Sci, 2004, 86(1):35-45. |
[18] | Cheverud J M. Relationships among ontogenetic, static, and evolutionary allometry[J]. Am J Phys Anthropol, 1982, 59(2):139-149. |
[19] | Kirkpatrick M, Heckman N. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters[J]. J Math Biol, 1989, 27(4):429-450. |
[20] | Kirkpatrick M, Lofsvold D, Bulmer M. Analysis of the inheritance, selection and evolution of growth trajectories[J]. Genetics, 1990, 124(4):979-993. |
[21] | Schwarz G. Estimating the dimension of a model[J]. Ann Stat, 1978, 6(2):461-464. |
[22] | 刘永新, 刘海金. 应用动物模型对牙鲆不同日龄生长性状的遗传分析[J]. 大连水产学院学报, 2009, 24:15-20. |
[23] | 马爱军, 王新安, 杨志, 等. 大菱鲆(Scophthalmus maximus)幼鱼生长性状的遗传力及其相关性分析[J]. 海洋与湖沼, 2008, 39(5):499-504. |
[24] | McKay L R, Schaeffer L R, McMillan I. Analysis of growth curves in rainbow trout using random regression[C]. Proc. 7th WCGALP, Communication, 2002:6-11. |
[25] | Kause A, Ritola O, Paananen, et al. Big and beautiful? Quantitative genetic parameters for appearance of large rainbow trout[J]. J Fish Biol, 2003, 62(3), 610-622. |
[26] | Moutopoulos D K, Stergiou K L. Length-weight and length-length relationships of fish species from the Aegean Sea (Greece)[J]. J Appl Ichthyol, 2002, 18(3):200-203. |
[27] | Mendes B, Fonseca P, Campos A. Weight-length relationships for 46 fish species of the Portuguese west coast[J]. J Appl Ichthyol, 2004, 20(5):355-361. |
[28] | 庄平, 宋超, 章龙珍, 等. 全人工繁殖西伯利亚鲟仔稚鱼发育的异速生长[J]. 生态学杂志, 2009, 28(4):681-687. |
[29] | Huysentruyt F, Moerkerke B, Devaere S, et al. Early development and allometric growth in the armoured catfish Corydoras aeneus (Gill, 1858)[J]. Hydrobiologia, 2009, 627(1):45-54. |
[30] | 马境, 章龙珍, 庄平, 等. 施氏鲟仔鱼发育及异速生长模型[J]. 应用生态学报, 2007, 18(12):2875-2882. |
[31] | 何勇凤, 吴兴兵, 朱永久, 等. 鲈鲤仔鱼的异速生长模式[J]. 动物学杂志, 2013, 48(1):8-15. |
[1] | 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022 |