首页 >  中国水产科学 >  半滑舌鳎线粒体DNA含量测定方法的建立与优化

2014, 21(5): 920-928. doi: 10.3724/SP.J.1118.2014.00920

半滑舌鳎线粒体DNA含量测定方法的建立与优化

1. 集美大学 水产学院, 福建 厦门 361021

2. 山东省渔业资源与生态环境重点实验室, 中国水产科学研究院 黄海水产研究所, 山东 青岛 266071

3. 大连海洋大学 水产与生命学院, 辽宁 大连 116023

4. 大连海洋大学 农业部北方海水增养殖重点实验室, 辽宁 大连, 116023

5. 厦门大学 物理与机电工程学院, 福建 厦门 361005

6. 厦门大学 海洋与地球学院, 福建 厦门 361005

7. 中国海洋大学 水产学院, 山东 青岛 266003

8. 中国水产科学研究院 黑龙江水产研究所, 黑龙江 哈尔滨 150070

9. 中国水产科学研究院 黑龙江水产研究所 淡水鱼类育种国家与地方联合工程实验室, 农业部淡水水产生物技术与遗传育种重点实验室, 黑龙江 哈尔滨 150070

10. 中国水产科学研究院 黄海水产研究所, 山东 青岛 266071

11. 中国水产科学研究院 黄海水产研究所, 农业部海洋渔业可持续发展重点实验室, 山东 青岛 266071

12. 上海海洋大学 水产与生命学院, 上海 201306

通讯作者: 冯文荣, fengwenrong1@163.com

收稿日期:2013-12-07
修回日期:2014-03-11

基金项目:   国家自然科学基金项目(31172411, 31201981)  国家国际科技合作专项项目(2013DFA31410). 

关键词: 线粒体DNA 含量 , 实时荧光定量PCR , 半滑舌鳎 , 优化

Optimization of quantitative PCR-based measurement of mitochondrial DNA content in different tissues of Cynoglossus semilaevis

Corresponding author: FENG Wenrong, fengwenrong1@163.com

Received Date:2013-12-07
Accepted Date:2014-03-11

Keywords: mitochondrial DNA content , real-time quantitative PCR , Cynoglossus semilaevis , optimization

本研究旨在应用实时荧光定量PCR 技术, 建立半滑舌鳎(Cynoglossus semilaevis)线粒体DNA(mtDNA)含量测定方法并进行优化。通过质粒标准品的线性化处理、模板DNA 的酶切和超声处理、mtDNA 和核DNA(nDNA)基因引物的筛选实验, 建立半滑舌鳎mtDNA 含量测定方法。结果表明, 质粒标准品的构象对荧光定量PCR 标准曲线影响较大, 线性化的质粒更适合用作标准品;酚-氯仿方法提取的模板DNA 适用于mtDNA 含量测定, 无需进行预处理;用D-loop 和ND1 这2 对引物所得的拷贝数较小且结果一致, 适用于mtDNA 拷贝数的测定;以不同核基因为参照所得的mtDNA 含量可能存在差异, 当以单拷贝核基因ENC1 和MYH6 为参照时, 可以计算出单个细胞中mtDNA 含量, 若以多拷贝基因GAPDH 为参照, mtDNA 含量测定值则较小。采用本方法分别对半滑舌鳎肝、肾、脾和肌肉组织的mtDNA 含量进行重复性检测实验, 结果表明, 相同组织的mtDNA 含量显示出良好的重复性(P>0.05),而不同组织中mtDNA 含量具有差异性, 可见该方法稳定可靠, 能为海洋鱼类mtDNA 含量检测提供借鉴。

Mitochondrial DNA (mtDNA) content is typically estimated as the copy number ratio of mtDNA to nuclear DNA(nDNA). However, the accuracy of mtDNA content measurement is affected by many factors, including the conformation of plasmid standards and the DNA template, the coexistence of mtDNA pseudogenes in the nuclear genome, and selection of both mtDNA and nDNA primer-pairs. To minimize the influence of these factors, an optimized method to quantify the mtDNA content in different tissues of Cynoglossus semilaevis was established using real-time quantitative PCR (RT-qPCR). First, two sets of candidate standards (the circular and linear plasmid) and three sets of DNA templates (enzyme digested, ultrasonic treated, and untreated) were prepared to evaluate the influence of the DNA template conformation. Additionally, four mtDNA and three nDNA primer pairs were also tested to determine their adequacy for the qRT-PCR analysis. The linear plasmid standard was more appropriate than the circular one because the super helical structure of the circular plasmid caused significant overestimation in RT-qPCR. There was no significant difference in the estimates of mtDNA content resulting from different DNA templates, suggesting that the DNA extracted by phenol-chloroform is suitable without any pre-treatment for extraction. The D-loop and ND1 primers yielded the same copy number, which was also the lowest among all the mtDNA primer pairs. The copy numbers for ATP6 and COII were 3.5 and 1.5 times higher than those from D-loop and ND1, respectively. The higher copy number of ATP6 and COII may be related to the co-amplification of homologous pseudogenes in the nuclear genome. Single copy nDNA loci ENC1 and MYH6 can be used as references for detecting cell numbers of diploids, and the precise mtDNA content per cell can be calculated using the formula: mtDNA content = 2×mtDNA copy number/nDNA copy number. In contrast, the mtDNA content value was lower when using the multicopy nDNA gene locus GAPDH as a reference. To evaluate the accuracy and stability of this optimized method, we measured the mtDNA content in four tissues (liver, kidney, spleen, and muscle) of C. semilaevis. D-loop and ENC1 primer pairs were chosen for the RT-qPCR, and the mtDNA content per cell was estimated using the method established in this study. There was no significant difference between triplicate repeats in each tissue (P>0.05), which suggests that the method has excellent repeatability. Furthermore, there was a significant difference in mtDNA content among the different tissues: 244–255,156–172, 97–107, 86–89 copies per cell were detected in liver, muscle, kidney, and spleen, respectively.

参考文献

[1] Robin E D, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells[J]. J Cell Physiol, 1988, 136(3): 507-513.
[2] Masuyama M, Iida R, Takatsuka H, et al. Quantitative change in mitochondrial DNA content in various mouse tissues during aging[J]. Biochim Biophys Acta(BBA):General Subjects, 2005, 1723(1-3): 302-308.
[3] Mahrous E, Yang Q, Clarke H J. Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse[J]. Reproduction, 2012, 144(2):177-185.
[4] Takeo S, Goto H, Kuwayama T, et al. Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos[J]. J Reprod Dev, 2013, 59(2): 174-179.
[5] Venegas V, Halberg M C. Measurement of mitochondrial DNA copy number[J]. Methods Mol Biol, 2012, 837:327-335.
[6] Artuso L, Romano A, Verri T, et al. Mitochondrial DNA metabolism in early development of zebrafish (Danio rerio)[J]. Biochim Biophys Acta, 2012, 1817(7): 1002-1011.
[7] Shay J W, Pierce D J, Werbin H. Mitochondrial DNA copy number is proportional to total cell DNA under a variety of growth conditions[J]. J Biol Chem, 1990, 265(25):14802-14807.
[8] Guo W, Jiang L, Bhasin S, et al. DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination[J]. Mitochondrion, 2009, 9(4): 261-265.
[9] Chen J, Kadlubar F F, Chen J Z. DNA supercoiling suppresses real-time PCR: a new approach to the quantification of mitochondrial DNA damage and repair[J]. Nucl Acid Res, 2007, 35(4): 1377-1388.
[10] Hou Y, Zhang H, Miranda L, et al. Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard:microalgal pcna as the model gene[J]. PLoS ONE, 2010, 5(3):e9545.
[11] Sambrook J, Russell D W. Molecular cloning: a laboratory manual[M]. New York: CSHL press, 2001.
[12] Moraes C T. What regulates mitochondrial DNA copy number in animal cells-[J]. Trends Genet, 2001, 17(4):199-205.
[13] Mutlu A G. Increase in mitochondrial DNA copy number in response to ochratoxin A and methanol-induced mitochondrial DNA damage in Drosophila[J]. Bull Environ Contam Toxicol, 2012, 89(6): 1129-1132.
[14] 邓景耀. 渤海渔业资源增殖与管理的生态学基础[J]. 海洋水产研究, 1988(9): 1-11.
[15] Malik A N, Shahni R, Rodriguez-de-Ledesma A, et al.Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias[J].Biochem Biophys Res Commun, 2011, 412(1): 1-7.
[16] Li C, Orti G, Zhang G, et al. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii)as a case study[J]. BMC Evol Biol, 2007, 7: 44-54.
[17] Miller F J, Rosenfeldt F L, Zhang C, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age[J]. Nucl Acid Res, 2003,31(11): e61.
[18] 闫玉莲, 谢小军. 鱼类适应环境温度的代谢补偿及其线粒体水平的调节机制[J]. 水生生物学报, 2012(3): 532-540.
[19] Alonso A, Martin P, Albarran C, et al. Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies[J]. Forensic Sci Int, 2004, 139(2-3): 141-149.
[20] Hock M B, Kralli A. Transcriptional control of mitochondrial biogenesis and function[J]. Annu Rev Physiol,2009, 71: 177-203.
[21] Scheffler I E. Mitochondrial electron transport and oxidative phosphorylation[Z]. New York: Wiley-Liss, 1999: 141-246.
[22] Song H, Buhay J E, Whiting M F, et al. Many species in one:DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified[J]. Proc Natl Acad Sci USA, 2008, 105(36): 13486-13491.
[23] Dimauro S, Davidzon G. Mitochondrial DNA and disease[J].Ann Med, 2005, 37(3): 222-232.
[24] Ma Q, Liu S, Zhuang Z, et al. Genomic structure, polymorphism and expression analysis of the growth hormone (GH)gene in female and male half-smooth tongue sole(Cynoglossus semilaevis)[J]. Gene, 2012, 493(1): 92-104.
[25] Hazkani-Covo E, Zeller R M, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes[J]. PLoS Genet, 2010, 6: e1000834.
[26] Bai R K, Perng C L, Hsu C H, et al. Quantitative PCR analysis of mitochondrial DNA content in patients with mitochondrial disease[J]. Ann N Y Acad Sci, 2004, 1011:304-309.
[27] Barazzoni R, Short K R, Nair K S. Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart[J]. J Biol Chem, 2000, 275(5): 3343-3347.
[28] Morten K J, Ashley N, Wijburg F, et al. Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion[J]. Mitochondrion,2007, 7(6): 386-395.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

半滑舌鳎线粒体DNA含量测定方法的建立与优化