首页 >  渔业科学进展 >  软体动物疱疹病毒及其对贝类养殖产业的危害

2021, 42(1): 214-226. doi: 10.19663/j.issn2095-9869.20200527001

软体动物疱疹病毒及其对贝类养殖产业的危害

中国水产科学研究院黄海水产研究所 农业农村部海水养殖病害防治重点实验室 青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室 青岛市海水养殖流行病学与生物安保重点实验室 青岛 266071

收稿日期:2020-05-27
修回日期:2020-08-03

基金项目:   国家自然科学基金(32073014)、农业农村部海水养殖病害防治重点实验室开放课题、中国水产科学研究院黄海水产研究所级基本科研业务费(20603022019022)、青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室开放课题(2019-BH-A02)、NSFC-山东联合基金(U1706204)和现代农业产业技术体系(CARS-49)共同资助 

关键词: 贝类养殖 , 软体动物疱疹病毒 , 牡蛎疱疹病毒 , 鲍疱疹病毒

Malacoherpesviruses and Their Associated Damages to Mollusk Aquaculture Industry

Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071

Received Date:2020-05-27
Accepted Date:2020-08-03

Keywords: Mollusk aquaculture , Malacoherpesvirus , Ostreid herpesvirus 1 , Haliotid herpesvirus 1

中国是贝类养殖大国,30余年来,贝类养殖产量总体稳中有升,但部分贝类的养殖产业因疫病影响出现严重萎缩、甚至消失。20世纪90年代以来,中国多种双壳贝类和杂色鲍(Haliotis diversicolor supertexta)因感染疱疹病毒出现大规模死亡,成为近年来危害中国贝类养殖业的主要病原。经流行病学调查和病原鉴定,引起中国双壳贝类和杂色鲍死亡的疱疹病毒分别为牡蛎疱疹病毒(Ostreid herpesvirus 1,OsHV-1)和鲍疱疹病毒(Haliotid herpesvirus 1,HaHV-1)。贝类疱疹病毒病不仅在中国发生,同时也在全球多个国家、地区传播和暴发,引起全球贝类养殖从业者和科研人员的广泛关注。多国学者从病毒特征、流行病学、诊断技术、生态防控和抗病育种等多个角度展开研究,以期减轻此类病毒对贝类产业造成的危害。大量科研力量的投入使OsHV-1和HaHV-1成为分类地位明确,研究最深入、最全面的贝类病毒性病原。本文对近年来OsHV-1和HaHV-1研究领域取得的主要成果进行总结,重点介绍其在中国和全球范围的发生、传播过程、产业危害和防控措施等。

China is one of the largest producers of cultivated mollusks and the production has increased steadily over the last 30 years. The aquaculture industry growing specific kinds of cultured mollusks in some localities or regions might suffer huge losses owing to infectious diseases. Mass mortalities of bivalves and small abalone (Haliotis diversicolor supertexta) associated with herpesviruses have frequently occurred since the 1990s, resulting in huge economic and social damages to related families and communities. Herpesvirus now represents the most destructive pathogen faced by mollusk aquaculture in China. Significant losses, which resulted from the epidemics associated with herpesvirus infection, have attracted enormous attentions in related sectors, including the scientific community. Epidemiological and etiological investigations showed that the herpesviruses infecting bivalves and abalone were Ostreid herpesvirus 1 (OsHV-1) and Haliotid herpesvirus 1 (HaHV-1). The outbreak of herpesvirus infection in mollusks not only happened in China but also in many other countries and regions around the world. Pacific oysters such as Crassostrea gigas were the most seriously affected bivalves. The significant loss associated with infectious diseases has attracted huge attentions from producers and researchers in the mollusk aquaculture sector around the world. To mitigate production loss associated with herpesvirus infection in mollusk aquaculture, researchers have investigated the characteristics of OsHV-1 and HaHV-1 viruses, their geographical distribution, susceptible hosts, epidemiological characteristics, and disease diagnosis and have tried to find ways to prevent and control them, including the use of disease resistance breeding. Large investments in scientific research has made OsHV-1 and HaHV-1 the most well studied viruses of mollusks. They also represented the only two mollusk viruses with clear classification status. In this study, we summarized the recent progress related to OsHV-1 and HaHV-1, with an emphasis on the occurrence, spread, damage, and disease control practices in China.

参考文献

[1] Abbadi M, Zamperin G, Gastaldelli M, et al. Identification of a newly described OsHV-1 µvar from the North Adriatic Sea (Italy). Journal of General Virology, 2018, 99(5):693-703
[2] Arzul I, Corbeil S, Morga B, et al. Viruses infecting marine molluscs. Journal of Invertebrate Pathology, 2017, 147:118-135
[3] Arzul I, Nicolas JL, Davison AJ, et al. French scallops:A new host for Ostreid herpesvirus-1. Virology, 2001a, 290(2):342-349
[4] Arzul I, Renault T, Lipart C, et al. Evidence for interspecies transmission of oyster herpesvirus in marine bivalves. Journal of General Virology, 2001b, 82(4):865-870
[5] Azéma P, Travers MA, Benabdelmouna A, et al. Single or dual experimental infections with Vibrio aestuarianus and OsHV-1 in diploid and triploid Crassostrea gigas at the spat, juvenile and adult stages. Journal of Invertebrate Pathology, 2016, 139:92-101
[6] Azéma P, Travers MA, De Lorgeril J, et al. Can selection for resistance to OsHV-1 infection modify susceptibility to Vibrio aestuarianus infection in Crassostrea gigas? First insights from experimental challenges using primary and successive exposures. Veterinary Research, 2015, 46:139
[7] Bai CM, Gao WH, Wang CM, et al. Identification and characterization of Ostreid herpesvirus 1 associated with massive mortalities of Scapharca broughtonii broodstocks in China. Diseases of Aquatic Organisms, 2016, 118(1):65-75
[8] Bai CM, Li YN, Chang PH, et al. In situ hybridization revealed wide distribution of Haliotid herpesvirus 1 in infected small abalone, Haliotis diversicolor supertexta. Journal of Invertebrate Pathology, 2020, 173:107356
[9] Bai CM, Li YN, Chang PH, et al. Susceptibility of two abalone species, Haliotis diversicolor supertexta and Haliotis discus hannai, to Haliotid herpesvirus 1 infection. Journal of Invertebrate Pathology, 2019a, 160:26-32
[10] Bai CM, Morga B, Rosani U, et al. Long-range PCR and high-throughput sequencing of Ostreid herpesvirus 1 indicate high genetic diversity and complex evolution process. Virology, 2019b, 526:81-90
[11] Bai CM, Rosani U, Li YN, et al. RNA-seq of HaHV-1-infected abalones reveals a common transcriptional signature of Malacoherpesviruses. Scientific Reports, 2019c, 9(1):938
[12] Bai CM, Wang CM, Xia JY, et al. Emerging and endemic types of Ostreid herpesvirus 1 were detected in bivalves in China. Journal of Invertebrate Pathology, 2015, 124:98-106
[13] Bai CM, Wang QC, Morga B, et al. Experimental infection of adult Scapharca broughtonii with Ostreid herpesvirus SB strain. Journal of Invertebrate Pathology, 2017, 143:79-82
[14] Barbosa-Solomieu V, Dégremont L, Vázquez-Juárez R, et al. Ostreid Herpesvirus 1 (OsHV-1) detection among three successive generations of Pacific oysters (Crassostrea gigas). Virus Research, 2005, 107(1):47-56
[15] Barbosa-Solomieu V, Renault T, Travers MA. Mass mortality in bivalves and the intricate case of the Pacific oyster, Crassostrea gigas. Journal of Invertebrate Pathology, 2015, 131:2-10
[16] Batista FM, Arzul I, Pepin JF, et al. Detection of Ostreid herpesvirus 1 DNA by PCR in bivalve molluscs:A critical review. Journal of Virological Methods, 2007, 139(1):1-11
[17] Batista FM, López-Sanmartín M, Grade A, et al. Sequence variation in Ostreid herpesvirus 1 microvar isolates detected in dying and asymptomatic Crassostrea angulata adults in the Iberian Peninsula:Insights into viral origin and spread. Aquaculture, 2015, 435:43-51
[18] Burioli EAV, Prearo M, Houssin M. Complete genome sequence of Ostreid herpesvirus type 1 μVar isolated during mortality events in the Pacific oyster Crassostrea gigas in France and Ireland. Virology, 2017, 509:239-251
[19] Camara MD, Yen S, Kaspar HF, et al. Assessment of heat shock and laboratory virus challenges to selectively breed for Ostreid herpesvirus 1 (OsHV-1) resistance in the Pacific oyster, Crassostrea gigas. Aquaculture, 2017, 469:50-58
[20] Carrasco N, Gairin I, Pérez J, et al. A production calendar based on water temperature, spat size, and husbandry practices reduce OsHV-1 μvar impact on cultured pacific oyster Crassostrea gigas in the Ebro Delta (Catalonia), Mediterranean coast of Spain. Frontiers in Physiology, 2017, 8:125
[21] Chang PH, Kuo ST, Lai SH, et al. Herpes-like virus infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Diseases of Aquatic Organisms, 2005, 65(1):23-27
[22] Chen IW, Chang PH, Chen MS, et al. Exploring the chronic mortality affecting abalones in Taiwan:Differentiation of abalone herpesvirus-associated acute infection from chronic mortality by PCR and in situ hybridization and histopathology. Taiwan Veterinary Journal, 2016, 42(1):1-9
[23] Chen MH, Kuo ST, Renault T, et al. The development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of abalone herpesvirus DNA. Journal of Virological Methods, 2014, 197:199-203
[24] Comps M, Cochennec N. A herpes-like virus from the European oyster Ostrea edulis L. Journal of Invertebrate Pathology, 1993, 62(2):201-203
[25] Corbeil S, Faury N, Segarra A, et al. Development of an in situ hybridization assay for the detection of Ostreid herpesvirus type 1 mRNAs in the Pacific oyster, Crassostrea gigas. Journal of Virological Methods, 2015, 211:43-50
[26] Corbeil S, McColl KA, Williams LM, et al. Abalone viral ganglioneuritis:Establishment and use of an experimental immersion challenge system for the study of abalone herpes virus infections in Australian abalone. Virus Research, 2012, 165(2):207-213
[27] Corbeil S, McColl KA, Williams LM, et al. Innate resistance of New Zealand paua to abalone viral ganglioneuritis. Journal of Invertebrate Pathology, 2017, 146:31-35
[28] Crane MSJ, McColl K, Cowley J, et al. Abalone herpesvirus. In:Liu D (ed). Molecular detection of animal viral pathogens. CRC Press, 2016, 807-815
[29] Davison AJ, Trus BL, Cheng N, et al. A novel class of herpesvirus with bivalve hosts. Journal of General Virology, 2005, 86(1):41-53
[30] Davison AJ. Evolution of the herpesviruses. Veterinary Microbiology, 2002, 86(1-2):69-88
[31] de Kantzow M, Whittington RJ, Hick P. Prior exposure to Ostreid herpesvirus 1 (OsHV-1) at 18℃ is associated with improved survival of juvenile Pacific oysters (Crassostrea gigas) following challenge at 22℃. Aquaculture, 2019, 507:443-450
[32] de Lorgeril J, Lucasson A, Petton B, et al. Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters. Nature Communications, 2018, 9(1):4215
[33] Dégremont L, Bédier E, Soletchnik P, et al. Relative importance of family, site, and field placement timing on survival, growth, and yield of hatchery-produced Pacific oyster spat (Crassostrea gigas). Aquaculture, 2005, 249(1-4):213-229
[34] Dégremont L, Garcia C, Allen Jr SK. Genetic improvement for disease resistance in oysters:A review. Journal of Invertebrate Pathology, 2015, 131:226-241
[35] Evans O, Hick P, Whittington RJ. Distribution of Ostreid herpesvirus-1 (OsHV-1) microvariant in seawater in a recirculating aquaculture system. Aquaculture, 2016, 458:21-28
[36] Evans O, Kan JZF, Pathirana E, et al. Effect of emersion on the mortality of Pacific oysters (Crassostrea gigas) infected with Ostreid herpesvirus-1 (OsHV-1). Aquaculture, 2019, 505:157-166
[37] Farley CA, Banfield WG, Kasnic Jr. G, et al. Oyster herpes-type virus. Science, 1972, 178(4062):759-760
[38] Fleury E, Barbier P, Petton B, et al. Latitudinal drivers of oyster mortality:Deciphering host, pathogen and environmental risk factors. Scientific Reports, 2020, 10(1):7264
[39] Fuhrmann M, Delisle L, Petton B, et al. Metabolism of the Pacific oyster, Crassostrea gigas, is influenced by salinity and modulates survival to the Ostreid herpesvirus OsHV-1. Biology Open, 2018, 7(2):bio028134
[40] Fuhrmann M, Petton B, Quillien V, et al. Salinity influences disease-induced mortality of the oyster Crassostrea gigas and infectivity of the Ostreid herpesvirus 1 (OsHV-1). Aquaculture Environment Interactions, 2016, 8:543-552
[41] Fuhrmann M, Richard G, Quéré C, et al. Low pH reduced survival of the oyster Crassostrea gigas exposed to the Ostreid herpesvirus 1 by altering the metabolic response of the host. Aquaculture, 2019, 503:167-174
[42] Gao F, Jiang JZ, Wang JY, et al. Real-time isothermal detection of abalone herpes-like virus and red-spotted grouper nervous necrosis virus using recombinase polymerase amplification. Journal of Virological Methods, 2018a, 251:92-98
[43] Gao F, Jiang JZ, Wang JY, et al. Real-time quantitative isothermal detection of Ostreid herpesvirus-1 DNA in Scapharca subcrenata using recombinase polymerase amplification. Journal of Virological Methods, 2018b, 255:71-75
[44] Guo X, Ford SE. Infectious diseases of marine molluscs and host responses as revealed by genomic tools. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2016, 371(1689):20150206
[45] Hick P, Evans O, Looi R, et al. Stability of Ostreid herpesvirus-1 (OsHV-1) and assessment of disinfection of seawater and oyster tissues using a bioassay. Aquaculture, 2016, 450:412-421
[46] Hine PM, Thorne T. Replication of herpes-like viruses in haemocytes of adult flat oysters Ostrea angasi an ultrastructural study. Diseases of Aquatic Organisms, 1997, 29(3):189-196
[47] Hine PM, Wesnay B, Basant P. Replication of a herpes-like virus in larvae of the flat oyster Tiostrea chilensis at ambient temperatures. Diseases of Aquatic Organisms, 1998, 32(3):161-171
[48] Hine PM, Wesney B, Hay B. Herpesviruses associated with mortalities among hatchery-reared larval Pacific oysters, Crassostrea gigas. Diseases of Aquatic Organisms, 1992, 12(2):135-142
[49] Hooper C, Hardy-Smith P, Handlinger J. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Australian Veterinary Journal, 2007, 85(5):188-193
[50] 黄倢, 曾令兵, 董宣, 等. 水产生物安保发展趋势与政策建议. 中国工程科学, 2016, 18(3):15-21Huang J, Zeng LB, Dong X, et al. Trend analysis and policy recommendation on aquatic biosecurity in China. Engineering Sciences, 2016, 18(3):15-21
[51] Hwang JY, Park JJ, Yu HJ, et al. Ostreid herpesvirus 1 infection in farmed Pacific oyster larvae Crassostrea gigas (Thunberg) in Korea. Journal of Fish Diseases, 2013, 36(11):969-972
[52] Kim HJ, Jun JW, Giri SS, et al. Mass mortality in Korean bay scallop (Argopecten irradians) associated with Ostreid Herpesvirus-1 μVar. Transboundary Emerging Diseases, 2019, 66(4):1442-1448
[53] Lipart C, Renault T. Herpes-like virus detection in infected Crassostrea gigas spat using DIG-labelled probes. Journal of Virological Methods, 2002, 101(1-2):1-10
[54] López-Sanmartín M, López-Fernández JR, Cunha ME, et al. Ostreid herpesvirus in wild oysters from the Huelva coast (SW Spain). Diseases of Aquatic Organisms, 2016a, 120(3):231-240
[55] López-Sanmartín M, Power DM, de la Herrán R, et al. Evidence of vertical transmission of Ostreid herpesvirus 1 in the Portuguese oyster Crassostrea angulata. Journal of Invertebrate Pathology, 2016b, 140:39-41
[56] Martenot C, Oden E, Travaille E, et al. Comparison of two real-time PCR methods for detection of Ostreid herpesvirus 1 in the Pacific oyster Crassostrea gigas. Journal of Virological Methods, 2010, 170(1-2):86-89
[57] Mineur F, Provan J, Arnott G. Phylogeographical analyses of shellfish viruses:inferring a geographical origin for Ostreid herpesviruses OsHV-1 (Malacoherpesviridae). Marine Biology, 2015, 162(1):181-192
[58] Minson A, Davison A, Eberle R, et al. Family herpesviridae. In:Andrew M.Q. King, Michael J. Adams, Eric B. Carstens (eds). Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, 2011, 203-225
[59] Nagai T, Nakamori M. Experimental infection of Ostreid herpesvirus 1 (OsHV-1) JPType1, a Japanese variant, in Pacific oyster Crassostrea gigas larvae and spats. Fish Pathology, 2018, 53(2):71-77
[60] Norberg P, Kasubi MJ, Haarr L, et al. Divergence and recombination of clinical herpes simplex virus type 2 isolates. Journal of Virology, 2007, 81(23):13158-13167
[61] Oden E, Martenot C, Berthaux M, et al. Quantification of Ostreid herpesvirus 1 (OsHV-1) in Crassostrea gigas by real-time PCR:Determination of a viral load threshold to prevent summer mortalities. Aquaculture, 2011, 317(1-4):27-31
[62] Pathirana E, Fuhrmann M, Whittington R, et al. Influence of environment on the pathogenesis of Ostreid herpesvirus-1 (OsHV-1) infections in Pacific oysters (Crassostrea gigas) through differential microbiome responses. Heliyon, 2019, 5(7):e02101
[63] Paul-Pont I, Dhand NK, Whittington RJ. Influence of husbandry practices on OsHV-1 associated mortality of Pacific oysters Crassostrea gigas. Aquaculture, 2013a, 412-413:202-214
[64] Paul-Pont I, Dhand NK, Whittington RJ. Spatial distribution of mortality in Pacific oysters Crassostrea gigas:Reflection on mechanisms of OsHV-1 transmission. Diseases of Aquatic Organisms, 2013b, 105(2):127-138
[65] Pepin JF, Riou A, Renault T. Rapid and sensitive detection of Ostreid herpesvirus 1 in oyster samples by real-time PCR. Journal of Virological Methods, 2008, 149(2):269-276
[66] Pernet F, Barret J, Patrik LG, et al. Mass mortalities of Pacific oysters Crassostrea gigas reflect infectious diseases and vary with farming practices in the Mediterranean Thau lagoon, France. Aquaculture Environment Interactions, 2012, 99(2):215-237
[67] Pernet F, Gachelin S, Stanisiere JY, et al. Farmer monitoring reveals the effect of tidal height on mortality risk of oysters during a herpesvirus outbreak. ICES Journal of Marine Science, 2019a, 76(6):1816-1824
[68] Pernet F, Tamayo D, Fuhrmann M, et al. Deciphering the effect of food availability, growth and host condition on disease susceptibility in a marine invertebrate. Journal of Experimental Biology, 2019b, 210534
[69] Pernet F, Tamayo D, Petton B. Influence of low temperatures on the survival of the Pacific oyster (Crassostrea gigas) infected with Ostreid herpes virus type 1. Aquaculture, 2015, 445:57-62
[70] Petton B, Boudry P, Alunno-Bruscia M, et al. Factors influencing disease-induced mortality of Pacific oysters Crassostrea gigas. Aquaculture Environment Interactions, 2015, 6(3):205-222
[71] 阙华勇, 张国范. 我国贝类产业技术的现状与发展趋势. 海洋科学集刊, 2016(51):69-76Que HY, Zhang GF. Status and trend of molluscan mariculture techniques in China. Studia Marina Sinica, 2016(51):69-76
[72] Ren WC, Chen HX, Renault T, et al. Complete genome sequence of acute viral necrosis virus associated with massive mortality outbreaks in the Chinese scallop, Chlamys farreri. Virology Journal, 2013, 10:110
[73] Ren WC, Renault T, Cai YY, et al. Development of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Ostreid herpesvirus 1 DNA. Journal of Virological Methods, 2010, 170(1-2):30-36
[74] Renault T, Arzul I. Herpes-like virus infections in hatchery-reared bivalve larvae in Europe:Specific viral DNA detection by PCR. Journal of Fish Diseases, 2001a, 24(3):161-167
[75] Renault T, Le Deuff RM, Chollet B, et al. Concomitant herpes-like virus infections in hatchery-reared larvae and nursery-cultured spat Crassostrea gigas and Ostrea edulis. Diseases of Aquatic Organisms, 2000a, 42(3):173-183
[76] Renault T, Le Deuff RM, Lipart C, et al. Development of a PCR procedure for the detection of a herpes-like virus infecting oysters in France. Journal of Virological Methods, 2000b, 88(1):41-50
[77] Renault T, Lipart C, Arzul I. A herpes-like virus infecting Crassostrea gigas and Ruditapes philippinarum larvae in France. Journal of Fish Diseases, 2001b, 24(6):369-376
[78] Renault T, Lipart C, Arzul I. A herpes-like virus infects a non-ostreid bivalve species:Virus replication in Ruditapes philippinarum larvae. Diseases of Aquatic Organisms, 2001c, 45(1):1-7
[79] Renault T, Moreau P, Faury N, et al. Analysis of clinical Ostreid herpesvirus 1 (Malacoherpesviridae) specimens by sequencing amplified fragments from three virus genome areas. Journal of Virology, 2012, 86(10):5942-5947
[80] Roizman B, Pellett PE. The family Herpesviridae:A brief introduction. In:Knipe DM, Howley PM, Griffin DE, et al. Fields Virology, vol 2. Philadelphia:Lippincott Williams & Wilkins, 2001, 2381-2397
[81] Sauvage C, Pépin JF, Lapègue S, et al. Ostreid herpesvirus 1 infection in families of the Pacific oyster, Crassostrea gigas, during a summer mortality outbreak:Differences in viral DNA detection and quantification using real-time PCR. Virus Research, 2009, 142(1-2):181-187
[82] Savin KW, Cocks BG, Wong F, et al. A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome. Virology Journal, 2010, 7:308
[83] Segarra A, Baillon L, Faury N, et al. Detection and distribution of Ostreid herpesvirus 1 in experimentally infected Pacific oyster spat. Journal of Invertebrate Pathology, 2016, 133:59-65
[84] Segarra A, Pepin JF, Arzul I, et al. Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Research, 2010, 153(1):92-99
[85] Shimahara Y, Kurita J, Kiryu I, et al. Surveillance of type 1 Ostreid herpesvirus (OsHV-1) variants in Japan. Fish Pathology, 2012, 47(4):129-136
[86] 宋林生. 海水养殖贝类病害预警预报技术及其应用. 大连海洋大学学报, 2020, 35(1):1-9Song LS. An early warning system for diseases during mollusc mariculture:Exploration and utilization. Journal of Dalian Ocean University, 2020, 35(1):1-9
[87] 宋微波, 王崇明, 王秀华, 等. 栉孔扇贝大规模死亡的病原研究新进展. 海洋科学, 2001, 25(12):23-26Song WB, Wang CM, Wang XH, et al. New research progress on massive mortality of cultured scallop Chlamys farreri. Marine Sciences, 2001, 25(12):23-26
[88] 宋振荣, 纪荣兴, 颜素芬, 等. 引起九孔鲍大量死亡的一种球状病毒. 水产学报, 2000, 24(5):463-467Song ZR, Ji RX, Yan SF, et al. A sphereovirus resulted in mass mortality of Haliotis diversicolor aquatilis. Journal of Fisheries of China, 2000, 24(5):463-467
[89] Szpara ML, Tafuri YR, Parsons L, et al. Genome sequence of the anterograde-spread-defective herpes simplex virus 1 strain MacIntyre. Genome Announcements, 2014, 2(6):e01161-14
[90] 唐启升, 方建光, 张继红, 等. 多重压力胁迫下近海生态系统与多营养层次综合养殖. 渔业科学进展, 2013, 34(1):1-11Tang QS, Fang JG, Zhang JH, et al. Impacts of multiple stressors on coastal ocean ecosystems and integrated multi-tropic aquaculture. Progress in Fishery Sciences, 2013, 34(1):1-11
[91] 唐启升, 韩冬, 毛玉泽, 等. 中国水产养殖种类组成、不投饵率和营养级. 中国水产科学, 2016, 23(4):729-758Tang QS, Han D, Mao YZ, et al. Species composition, non-fed rate and trophic level of Chinese aquaculture. Journal of Fishery Sciences of China, 2016, 23(4):729-758
[92] Ugalde SC, Preston J, Ogier E, et al. Analysis of farm management strategies following herpesvirus (OsHV-1) disease outbreaks in Pacific oysters in Tasmania, Australia. Aquaculture, 2018, 495:179-186
[93] 王崇明, 王秀华, 宋晓玲, 等. 栉孔扇贝一种球形病毒的分离纯化及其超微结构观察. 水产学报, 2002, 26(2):180-184Wang CM, Wang XH, Song XL, et al. Purification and ultrastructure of a spherical virus in cultured scallop Chlamys farreri. Journal of Fisheries of China, 2002, 26(2):180-184
[94] Wang J, Guo Z, Feng J, et al. Virus infection in cultured abalone, Haliotis diversicolor Reeve in Guangdong Province, China. Journal of Shellfish Research, 2004, 23(4):1163-1168
[95] Wei HY, Huang S, Yao T, et al. Detection of viruses in abalone tissue using metagenomics technology. Aquaculture Research, 2018, 49(8):2704-2713
[96] Wu FC, Zhang GF. Pacific abalone farming in China:Recent innovations and challenges. Journal of Shellfish Research, 2016, 35(3):703-710
[97] Xia JY, Bai CM, Wang CM, et al. Complete genome sequence of Ostreid herpesvirus-1 associated with mortalities of Scapharca broughtonii broodstocks. Virology Journal, 2015, 12:110
[98] Xin L, Li C, Bai C, et al. Ostreid herpesvirus-1 infects specific hemocytes in ark clam, Scapharca broughtonii. Viruses, 2018, 10(10):529
[99] Xin L, Wei Z, Bai C, et al. Influence of temperature on the pathogenicity of Ostreid herpesvirus-1 in ark clam, Scapharca broughtonii. Journal of Invertebrate Pathology, 2020, 169:107299
[100] 张福绥, 杨红生. 山东沿岸夏季栉孔扇贝大规模死亡原因分析. 海洋科学, 1999(1):44-47Zhang FS, Yang HS. Analysis of the causes of mass mortality of farming Chlamys farreri in summer in coastal areas of Shandong, China. Marine Sciences, 1999(1):44-47
[101] 张奇亚, 桂建芳. 水产动物的病毒基因组及其病毒与宿主的相互作用. 中国科学:生命科学, 2014, 44(12):1236-1252Zhang QY, Gui JF. Virus genomes and virus-host interactions in aquaculture animals. Science China Life Sciences, 2014, 44(12):1236-1252

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

软体动物疱疹病毒及其对贝类养殖产业的危害