首页 >  渔业科学进展 >  刺参养殖池塘中一株植物乳杆菌的分离及其生物学特性

2019, 40(6): 154-162. doi: 10.19663/j.issn2095-9869.20180912002

刺参养殖池塘中一株植物乳杆菌的分离及其生物学特性

1. 大连海洋大学水产与生命学院 大连 116023;

2. 农业农村部海洋渔业可持续发展重点实验室 中国水产科学研究院黄海水产研究所 青岛 266071;

3. 青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室 青岛 266071;

4. 山东海跃水产科技有限公司 东营 257500;

5. 青岛瑞滋海珍品发展有限公司 青岛 266400

通讯作者: 李彬, libin@ysfri.ac.cn

收稿日期:2018-09-12
修回日期:2018-10-08

基金项目:   中国水产科学研究院黄海水产研究所基本科研业务费(20603022016008)、中央级公益性科研院所基本科研业务费专项资金(2018GH10)、山东省农业良种工程重大课题(2017LZGC010)、威海市海洋经济创新发展示范城市产业链协同创新类项目和山东省自主创新成果转化专项(2013ZHZX2A0801)共同资助 

关键词: 刺参 , 腐皮综合征 , 灿烂弧菌 , 假交替单孢菌 , 植物乳杆菌 , 抑菌活性

Screening and Characteristic Analysis of Lactobacillus plantarum from Ponds for Sea Cucumber Farming

1. College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023;

2. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071;

3. Pilot National Laboratory for Marine Science and Technology(Qingdao), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071;

4. Shandong Haiyue Aquatic Science and Technology Co. Ltd, Dongying 257500;

5. Qingdao Ruizi Seafood Development Co. Ltd, Qingdao 266400

Corresponding author: LI Bin, libin@ysfri.ac.cn

Received Date:2018-09-12
Accepted Date:2018-10-08

Keywords: Apostichopus japonicus , Skin ulcer syndrome , Vibrio splendidus , Pseudoalteromonas nigrifaciens , Lactobacillus plantarum , Antagonistic activity

2017年5月,从山东东营刺参(Apostichopus japonicus)养殖池塘底泥中分离获得49株乳酸菌。以刺参“腐皮综合征”的2株致病菌[灿烂弧菌(Vibrio splendidus)和假交替单胞菌(Pseudoalteromonasnigrifaciens)]为指示菌进行拮抗作用实验,获得1株具有显著抑菌活性的乳酸菌CLY-5,对该菌株进行了生理生化实验、16S rDNA序列分析、生长特性及其对刺参的安全性研究。结果显示,菌株CLY-5对灿烂弧菌和假交替单胞菌具有较好的抑制作用,且菌株的胞内产物与胞外产物均具有抑菌效果,抑菌圈分别为20、23 mm和27、38 mm,胞外产物的拮抗作用优于胞内产物。利用该菌对刺参进行高浓度浸浴测试其安全性,浓度为1×109、1×108和1×107 CFU/ml,实验期间刺参状态良好,无死亡现象。16S rDNA序列分析表明,CLY-5与植物乳杆菌(Lactobacillusplantarum NR117813.1)的相似性为100%,初步鉴定该菌株为植物乳杆菌。菌株CLY-5在30℃~44℃、pH 6~8范围内生长较快,20 h进入对数生长期,28~32 h达到生长高峰。筛选的植物乳杆菌具有良好的抑菌能力,且其生长特性适应刺参池塘的养殖环境,为刺参疾病的生态防控及乳酸菌资源的开发提供应用数据参考。

Forty-nine lactic acid bacteria strains were isolated from sediment samples from cultured ponds of sea cucumbers (Apostichopus japonicus) in Dongying, Shandong Province, in May 2017. First, antagonistic bacterial experiments were conducted using Vibrio splendidus and Pseudoalteromonas nigrifaciens, which are the main pathogenic bacteria of "skin ulcer syndrome" for sea cucumbers, and a lactic acid bacteria CLY-5, which has demonstrated significant bacteriostatic activity. Next, physiological and biochemical experiments and a similarity analysis of 16S rDNA sequences as well as the growth character of CLY-5 were carried out. A safety experiment for sea cucumbers was also performed. The results revealed that CLY-5 strain successfully inhibited V. splendidus and P. nigrifaciens. Meanwhile, the strain's intracellular and extracellular products effectively inhibited V. splendidus and P. nigrifaciens, as demonstrated by inhibition zone diameters of 20 mm, 23 mm, and 27 mm, 38 mm, respectively, with extracellular products showing superior performance compared with intracellular products. Dipping bath concentrations were set to 1×109, 1×108, and 1×107 CFU/ml to test the safety of CLY-5 for sea cucumbers. During the experiment, all sea cucumbers were in good conditions. Based on the 16S rDNA sequence analysis, strain CLY-5 was determined to be identical to Lactobacillus plantarum NR117813.1. In addition, strain CLY-5 exhibited superior growth at 30℃~44℃ and salinities of 6 to 8. Moreover, CLY-5 came into a logarithmic growth phase after 20 h of cultivation and reached peak growth after 28~32 h. In summary, strain CLY-5 could be used to reduce the occurrence of sea cucumber disease and is also suitable for pond culture environment. These results provide a basis for ecological prevention strategies in disease control, and should prove useful in the development and utilization of lactic acid bacteria.

参考文献

[1] Balcázar JL, Vendrell D, de Blas I, et al. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 2008, 278(1-4):188-191
[2] Cai Y, Benno Y, Nakase T, et al. Specific probiotic characterization of Weissella hellenica DS-12 isolated from flounder intestine. Journal of General and Applied Microbiology, 1998, 44(5):311-316
[3] Chi C, Liu JY, Fei SZ, et al. Effect of intestinal autochthonous probiotics isolated from the gut of sea cucumber (Apostichopus japonicus) on immune response and growth of A. japonicus. Fish and Shellfish Immunology, 2014, 38(2):367-373
[4] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京:科学出版社, 2001, 45-65Dong XZ, Cai MY. Common bacteria system identification manual. Beijing:Science Press, 2001, 45-65
[5] 杜斌, 吴文能, 王继玥, 等. 侗族传统腌鱼中乳酸菌的分离鉴定与生物学特性. 江苏农业科学, 2018, 46(7):185-188Du B, Wu WN, Wang JY, et al. Isolation, identification and biological characteristics of lactic acid bacteria from Gaeml traditional preserved fish. Jiangsu Agricultural Sciences, 2018, 46(7):185-188
[6] 杜静芳, 缪璐欢, 马欢欢, 等. 淡水鱼肠道中拮抗副溶血弧菌乳酸菌的筛选及鉴定. 中国食品学报, 2017, 17(5):168-175Du JF, Miao LH, Ma HH, et al. Screening and identification of lactic acid bacteria with antagonistic Vibrio parahaemolyticus derived from freshwater fish intestinal. Journal of Chinese Institute of Food Science and Technology, 2017, 17(5):168-175
[7] Estefanía MA, Beatriz GS, Carlos A, et al. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology, 2013, 13(1):1-22
[8] 农业部渔业渔政管理局. 中国渔业统计年鉴. 北京:中国农业出版社, 2017Fisheries and Fisheries Administration Bureau of the Ministry of Agriculture. China fishery statistics yearbook. Beijing:China Agriculture Press, 2017
[9] 宫魁, 王宝杰, 刘梅, 等. 乳酸菌及其代谢产物对刺参幼体肠道菌群和非特异性免疫的影响. 海洋科学, 2013, 37(7):7-12Gong K, Wang BJ, Liu M, et al. The influence of lactic acid bacteria and metabolites on intestinal microflora and nonspecific immunity of juvenile sea cucumber (Apostichopus japonicus). Marine Sciences, 2013, 37(7):7-12
[10] 韩墨, 王燕, 杨志鹏, 等. 内蒙古传统酸奶乳酸菌的筛选及体外益生效果评价. 食品研究与开发, 2018, 39(1):152-156Han M, Wang Y, Yang ZP, et al. Screening of lactic acid bacteria in traditional yoghurt of Inner Mongolia and evaluation of its benefit in vitro. Food Research and Development, 2018, 39(1):152-156
[11] Jiang ML, Zhang F, Wan CX, et al. Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk. Journal of Dairy Science, 2016, 99(3):1736-1746
[12] Khouadja S, Haddaji N, Hanchi M, et al. Selection of lactic acid bacteria as candidate probiotics for Vibrio parahaemolyticus depuration in Pacific oysters (Crassostrea gigas). Aquaculture Research, 2017, 48(4):1885-1894
[13] 孔彦卓, 尹乐斌, 雷志明, 等. 一株高产酸乳酸菌的分离鉴定及生物学特性研究. 中国食品添加剂, 2017(9):88-94Kong YZ, Yin LB, Lei ZM, et al. Study on isolation and characterization of high acid-producing lactic acid bacteria. China Food Additives, 2017(9):88-94
[14] Lash BW, Mysliwiec TH, Gourama H. Detection and partial characterization of a broad-range bacteriocin produced by Lactobacillus plantarum (ATCC8014). Food Microbiology, 2005, 22(2-3):199-204.
[15] Lee HI, Kim MH, Kim KY, et al. Screening and selection of stress resistant Lactobacillus spp. isolated from the marine oyster (Crassostrea gigas). Anaerobe, 2010, 16(5):522-526
[16] Li C, Ren Y, Jiang S, et al. Effects of dietary supplementation of four strains of lactic acid bacteria on growth, immune-related response and genes expression of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish and Shellfish Immunology, 2018, 74:69-75
[17] 刘长军. 植物乳杆菌对尼罗罗非鱼的肠道黏膜免疫调节及生长性能的影响. 饲料工业, 2018, 39(12):43-48Li CJ. The effect of Lactobacillus plantarum 08.923 on Oreochromis niloticus gut mucosal immunity and growth performance. Feed Industry, 2018, 39(12):43-48
[18] 李存玉, 柳学周, 徐永江, 等. 两株有益菌的分离、培养、鉴定及其水质调控效果评价. 渔业科学进展, 2017, 38(1):120-127Li CY, Liu XZ, Xu YJ, et al. Isolation, culture, and identification of two strains of probiotics and their effects on water quality control. Progress in Fishery Sciences, 2017, 38(1):120-127
[19] 凌代文, 东秀珠. 乳酸细菌分类鉴定及实验方法. 北京:中国轻工业出版社, 1999, 130-137Ling DW, Dong XZ. Classification and identification of lactic acid bacteria and experimental methods. Beijing:China Light Industry Press, 1999, 130-137
[20] 骆艺文, 郝志凯, 王印庚, 等. 一株引起刺参"腐皮综合征"的蜡样芽胞杆菌. 水产科技情报, 2009, 36(2):60-63Luo YW, Hao ZK, Wang YG, et al. A Bacillus cereus causing "skin ulcer syndrome" of sea cucumber. Fisheries Science and Technology Information, 2009, 36(2):60-63
[21] NavinChandran M, Iyapparaj P, Moovendhan S, et al. Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon. Fish and Shellfish Immunology, 2014, 36:38-45
[22] 谯仕彦, 侯成立, 曾祥芳. 乳酸菌对猪肠道屏障功能的调节作用及其机制. 动物营养学报, 2014, 26(10):3052-3063Qiao SY, Hou CL, Zeng XF. Regulation and mechanism of lactic acid bacteria on porcine intestinal barrier function. Chinese Journal of Animal Nutrition, 2014, 26(10):3052-3063
[23] 曲磊, 康元环, 孙武文, 等. 一株鱼源植物乳杆菌的部分生物学特性研究. 黑龙江畜牧兽医, 2018(5):181-184Qu L, Kang YH, Sun WW, et al. Research on some biological characteristics of a Lactobacillus plantarum strain isolated from fish. Heilongjiang Animal Science and Veterinary Medicine, 2018(5):181-184
[24] Suzer C, Coban D, Kamaci HO, et al. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata L.) larvae:Effects on growth performance and digestive enzyme activities. Aquaculture, 2008, 280(1-4):140-145
[25] Talpur AD, Ikhwanuddin M, Abdullah MDD, et al. Indigenous Lactobacillus plantarum as probiotic for larviculture of blue swimming crab, Portunus pelagicus (Linnaeus, 1758):Effects on survival, digestive enzyme activities and water quality. Aquaculture, 2013, 416-417:173-178
[26] Velmurugan S, Palanikumar P, Velayuthani P, et al. Bacterial white patch disease caused by Bacillus cereus, a new emerging disease in semi-intensive culture of Litopenaeus vannamei. Aquaculture, 2015, 444(3):49-54
[27] Wang JH, Zhao LQ, Liu JF, et al. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology, 2015, 43(5):330-336
[28] 王睿迪, 刘胜男, 王玉, 等. 咸干蓝点马鲛品质特征与优势菌群分析. 渔业科学进展, 2019, 40(2):141-147Wang RD, Liu SN, Wang Y, et al. Analysis on quality characteristics and dominant strains of dried salted Spanish mackerel. Progress in Fishery Sciences, 2019, 40(2):141-147
[29] 王印庚, 方波, 张春云, 等. 养殖刺参保苗期重大疾病"腐皮综合征"病原及其感染源分析. 中国水产科学, 2006, 13(4):610-616Wang YG, Fang B, Zhang CY, et al. Etiology of skin ulcer syndrome in cultured juveniles of Apostichopus japonicus and analysis of reservoir of the pathogens. Journal of Fishery Sciences of China, 2006, 13(4):610-616
[30] Wang YG, Lee KL, Najiah M, et al. A new bacterial white spot syndrome (BWSS) in cultured tiger shrimp Penaeus monodon and its comparison with white spot syndrome (WSS) caused by virus. Diseases of Aquatic Organisms, 2000, 41(1):9-18
[31] 张春云, 王印庚, 荣小军. 养殖刺参腐皮综合征病原菌的分离与鉴定. 水产学报, 2006, 30(1):118-123Zhang CY, Wang YG, Rong XJ. Isolation and identification of causative pathogen for skin ulcerative syndrome in Apostichopus japonicus. Journal of Fisheries of China, 2006, 30(1):118-123
[32] 张涛, 白岚, 李蕾, 等. 不同添加量的益生菌组合对仿刺参消化和免疫指标的影响. 大连水产学院学报, 2009, 24(S1):64-68Zhang T, Bai L, Li L, et al. Effect of different combinations of probiotics on digestibility and immunity index in sea cucumber Apostichopus japonicus. Journal of Dalian Fisheries University, 2009, 24(S1):64-68
[33] Zhao YC, Yuan L, Wan JL, et al. Effects of potential probiotic Bacillus cereus EN25 on growth, immunity and disease resistance of juvenile sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology, 2016, 49:237-242

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

刺参养殖池塘中一株植物乳杆菌的分离及其生物学特性