Research progress on the mechanism of carotenoid absorption, metabolism and deposition in animals in aquature: a review
-
摘要: 类胡萝卜素是自然界普遍存在的天然色素,对水产动物生长、发育、免疫和体色具有重要作用。水产动物类胡萝卜素的吸收、代谢和沉积能力是遗传改良的重要靶点,对其性状提升具有重要作用。本文综述了水产动物主要类胡萝卜素种类、吸收和代谢分子机制,着重介绍了B类清道夫受体(SR-B1)、决定簇36(CD36)、β-胡萝卜素加氧酶1(BCO1)、β-胡萝卜素加氧酶2(BCO2)及细胞色素酶450(P450)家族的CYP2J19和CYP3A80在类胡萝卜素转运和转化中的作用,分析了类胡萝卜素酮化的可能机制和主要类胡萝卜素结合蛋白的特性。针对目前研究中存在的问题,提出通过基因-表型关联分析揭示遗传基础、多组学联合分析筛选鉴定新酮化酶基因、单细胞转录组解析类胡萝卜素沉积过程及筛选与构建体色遗传材料等未来重点研究方向,以期为水产动物类胡萝卜素吸收、代谢和沉积机制的研究提供科学参考。Abstract: Carotenoids are natural pigments commonly found in nature and play an important role in the growth, development, immunity, and body color of animals in aquaculture. The absorption, metabolism, and deposition ability of carotenoids animals in aquaculture is a key target for genetic improvement, which plays an important role in improving their traits. The main types, absorption, and metabolic molecular mechanisms of carotenoids is reviewed tin animals in aquaculture, with a focus on the function analysis of SR-B1, CD36, BCO1, BCO2, CYP2J19 and CYP3A80.The possible mechanisms of carotenoid ketosis and the characteristics of major carotenoid binding proteins are analyzed. Four research aspects are proposed to provide scientific reference for future research on the absorption, metabolism and deposition mechanism, including gene phenotype association analysis to reveal genetic basis, multiomics conjoint analysis to screen and identify new ketolase genes, single-cell RNA (ScRNA) sequencing to analyze carotenoid deposition process, and screening and construction of body color genetic strains.
-
Key words:
- carotenoid /
- aquatic animal /
- absorption /
- oxidation /
- carotenoid binding protein
-
WEAVER R J, SANTOS E S A, TUCKER A M, et al.Carotenoid metabolism strengthens the link between feather coloration and individual quality[J].Nature Communications, 2018, 9(1):73.
TOEWS D P L, HOFMEISTER N R, TAYLOR S A.The evolution and genetics of carotenoid processing in animals[J].Trends in Genetics, 2017, 33(3):171-182.
BRITTON G, LIAAEN-JENSEN S, PFANDER H.Carotenoids:handbook[M].Basel, Switzerland:Springer Science & Business Media, 2004.
NAKANO T, WIEGERTJES G.Properties of carotenoids in fish fitness:a review[J].Marine Drugs, 2020, 18(11):568.
MAOKA T.Carotenoids in marine animals[J].Marine Drugs, 2011, 9(2):278-293.
YANG Y, KIM B, LEE J Y.Astaxanthin structure, metabolism, and health benefits[J].Journal of Human Nutrition & Food Scienc, 2013, 1(1003).
NIU J, TIAN L X, LIN H Z, et al.Carotenoids in aquaculture:an overview[J].Journal of Animal Science and Biotechnology, 2011, 2(1):44-58.
DA COSTA D P, MIRANDA-FILHO K C.The use of carotenoid pigments as food additives for aquatic organisms and their functional roles[J].Review in Aquaculture, 2020, 12(3):1567-1578.
VON LINTIG J, MOON J, LEE J, et al.Carotenoid metabolism at the intestinal barrier[J].Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2020, 1865(11):158580.
WIDJAJA-ADHI M A K, LOBO G P, GOLCZAK M, et al.A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption[J].Human Molecular Genetics, 2015, 24(11):3206-3219.
SHYAM R, VACHALI P, GORUSUPUDI A, et al.All three human scavenger receptor class B proteins can bind and transport all three macular xanthophyll carotenoids[J].Archives of Biochemistry and Biophysics, 2017, 634:21-28.
ACTON S, RIGOTTI A, LANDSCHULZ K T, et al.Identification of scavenger receptor SR-BI as a high density lipoprotein receptor[J].Science, 1996, 271(5248):518-520.
RODRIGUEZA W V, THUAHNAI S T, TEMEL R E, et al.Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells[J].The Journal of Biological Chemistry, 1999, 274(29):20344-20350.
YU M, LAU T Y, CARR S A, et al.Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI[J].Biochemistry, 2012, 51(50):10044-10055.
SAKUDOH T, KUWAZAKI S, IIZUKA T, et al.CD36 homolog divergence is responsible for the selectivity of carotenoid species migration to the silk gland of the silkworm Bombyx mori[J].Journal of Lipid Research, 2013, 54(2):482-495.
HUANG Y Y, ZHANG L L, WANG G D, et al.De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis[J].Gene, 2022, 806:145929.
LIN S, ZHANG L L, WANG G D, et al.Searching and identifying pigmentation genes from Neocaridina denticulate sinensis via comparison of transcriptome in different color strains[J].Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2022, 42:100977.
REBOUL E.Mechanisms of carotenoid intestinal absorption:where do we stand?[J].Nutrients, 2019, 11(4):838.
KIEFER C, SUMSER E, WERNET M F, et al.A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila[J].Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16):10581-10586.
TOOMEY M B, LOPES R J, ARAÚJO P M, et al.High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds[J].Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(20):5219-5224.
HILL G E, JOHNSON J D.The vitamin A-redox hypothesis:a biochemical basis for honest signaling via carotenoid pigmentation[J].The American Naturalist, 2012, 180(5):E127-E150.
LU X Q, ZHANG L L, WANG G D, et al.Functional analysis of ABCG2 gene in pigment transport of Neocaridina denticulata sinensis[J].Gene, 2022, 844:146810.
DELA SEÑA C, NARAYANASAMY S, RIEDL K M, et al.Substrate specificity of purified recombinant human β-carotene 15, 15'-oxygenase (BCO1)[J].The Journal of Biological Chemistry, 2013, 288(52):37094-37103.
DELA SEÑA C, SUN J, NARAYANASAMY S, et al.Substrate specificity of purified recombinant chicken β-carotene 9', 10'-oxygenase (BCO2)[J].The Journal of Biological Chemistry, 2016, 291(28):14609-14619.
KELLY M E, RAMKUMAR S, SUN W Z, et al.The biochemical basis of vitamin A production from the asymmetric carotenoid β-cryptoxanthin[J].ACS Chemical Biology, 2018, 13(8):2121-2129.
AMENGUAL J, WIDJAJA-ADHI M A K, RODRIGUEZ-SANTIAGO S, et al.Two carotenoid oxygenases contribute to mammalian provitamin A metabolism[J].The Journal of Biological Chemistry, 2013, 288(47):34081-34096.
RAGHUVANSHI S, REED V, BLANER W S, et al.Cellular localization of β-carotene 15, 15' oxygenase-1(BCO1) and β-carotene 9', 10' oxygenase-2(BCO2) in rat liver and intestine[J].Archives of Biochemistry and Biophysics, 2015, 572:19-27.
WU L, GUO X, LYU Y, et al.Targeted metabolomics reveals abnormal hepatic energy metabolism by depletion of β-carotene oxygenase 2 in mice[J].Scientific Reports, 2017, 7(1):14624.
GUO X, WU L, LYU Y, et al.Ablation of β, β-carotene-9', 10'-oxygenase 2 remodels the hypothalamic metabolome leading to metabolic disorders in mice[J].The Journal of Nutritional Biochemistry, 2017, 46:74-82.
PALCZEWSKI G, WIDJAJA-ADHI M A, AMENGUAL J, et al.Genetic dissection in a mousemodel reveals interactions between carotenoids and lipid metabolism[J].Journal of Lipid Research, 2016, 57(9):1684-1695.
ASSON-BATRES M A, ROCHETTE-EGLY C.Biochemistry of retinoid signaling II[M].Berlin/Heidelberg, Germany:Springer, 2016.
LI X, WANG S Y, XUN X G, et al.A carotenoid oxygenase is responsible for muscle coloration in scallop[J].Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2019, 1864(7):966-975.
SUN Y Y, YAN C C, LIU M F, et al.CRISPR/Cas9-mediated deletion of one carotenoid isomerooxygenase gene (EcNinaB-X1) from Exopalaemon carinicauda[J].Fish & Shellfish Immunology, 2020, 97:421-431.
SUN Y Y, LIU M F, YAN C C, et al.CRISPR/Cas9-mediated deletion of β, β-carotene 9', 10'-oxygenase gene (EcBCO2) from Exopalaemon carinicauda[J].International Journal of Biological Macromolecules, 2020, 151:168-177.
LEI C, LI J H, ZHENG Z, et al.Molecular cloning, expression pattern of β-carotene 15, 15-dioxygenase gene and association analysis with total carotenoid content in pearl oyster Pinctada fucata martensii[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2019, 229:34-41.
CHELSTOWSKA S, WIDJAJA-ADHI M A, SILVAROLI J A, et al.Molecular basis for vitamin A uptake and storage in vertebrates[J].Nutrients, 2016, 8(11):676.
PETKOVICH M, BRAND N J, KRUST A, et al.A human retinoic acid receptor which belongs to the family of nuclear receptors[J].Nature, 1987, 330(6147):444-450.
BALMER J E, BLOMHOFF R.Gene expression regulation by retinoic acid[J].Journal of Lipid Research, 2002, 43(11):1773-1808.
ZHONG G, HOGARTH C, SNYDER J M, et al.The retinoic acid hydroxylase Cyp26a1 has minor effects on postnatal vitamin A homeostasis, but is required for exogenous at RA clearance[J].The Journal of Biological Chemistry, 2019, 294(29):11166-11179.
KEDISHVILI N Y.Enzymology of retinoic acid biosynthesis and degradation:thematic review series:fat-soluble vitamins:vitamin A[J].Journal of Lipid Research, 2013, 54(7):1744-1760.
OBROCHTA K M, KROIS C R, CAMPOS B, et al.Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FoxO1[J].The Journal of Biological Chemistry, 2015, 290(11):7259-7268.
TWOMEY E, JOHNSON J D, CASTROVIEJO-FISHER S, et al.A ketocarotenoid-based colour polymorphism in the sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation[J].Molecular Ecology, 2020, 29(11):2004-2015.
TWYMAN H, VALENZUELA N, LITERMAN R, et al.Seeing red to being red:conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles[J].Proceedings Biological Sciences, 2016, 283(1836):20161208.
WYBOUW N, KURLOVS A H, GREENHALGH R, et al.Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals[J].Proceedings Biological Sciences, 2019, 286(1907):20191039.
VOROBYEV M.Coloured oil droplets enhance colour discrimination[J].Proceedings Biological Sciences, 2003, 270(1521):1255-1261.
JOHNSON J D, HILL G E.Is carotenoid ornamentation linked to the inner mitochondria membrane potential?A hypothesis for the maintenance of signal honesty[J].Biochimie, 2013, 95(2):436-444.
MOJIB N, AMAD M, THIMMA M, et al.Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia[J].Molecular Ecology, 2014, 23(11):2740-2756.
HILL G E, HOOD W R, GE Z Y, et al.Plumage redness signals mitochondrial function in the house finch[J].Proceedings Biological Sciences, 2019, 286(1911):20191354.
OZEIR M, MVHLENHOFF U, WEBERT H, et al.Coenzyme Q biosynthesis:Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency[J].Chemistry & Biology, 2011, 18(9):1134-1142.
THOMAS S E, HARRISON E H.Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins[J].Journal of Lipid Research, 2016, 57(10):1865-1878.
KEEN J N, CACERES I, ELIOPOULOS E E, et al.Complete sequence and model for the C1 subunit of the carotenoprotein, crustacyanin, and model for the dimer, beta-crustacyanin, formed from the C1 and A2 subunits with astaxanthin[J].Febs Journal, 2010, 202(1):31-40.
BERNHARD K, ENGLERT G, MEISTER W, et al.Carotenoids of the carotenoprotein asteriarubin.Optical purity of asterinic acid[J].Helvetica Chimica Acta, 1982, 65(7):2224-2229.
ZAGALSKY P F, HAXO F, HERTZBERG S, et al.Studies on a blue carotenoprotein, linckiacyanin, isolated from the starfish Linckia laevigata (Echinodermata:Asteroidea)[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1989, 93(2):339-353.
RENSTRØM B, RØNNEBERG H, BORCH G, et al.Animal carotenoids-27.further studies on the carotenoproteins crustacyanin and ovoverdin[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry, 1982, 71(2):249-252.
计量
- 文章访问数: 435
- PDF下载数: 2
- 施引文献: 0