首页 >  水生态学杂志 >  3种微藻对海水集约化对虾养殖尾水氮磷的去除效果

2023, 44(5): 149-155. doi: 10.15928/j.1674-3075.202201130019

3种微藻对海水集约化对虾养殖尾水氮磷的去除效果

1. 浙江海洋大学, 国家海洋设施养殖工程技术研究中心, 浙江 舟山 316022;

2. 中国水产科学研究院南海水产研究所, 农业农村部南海渔业资源开发利用重点实验室, 广东省渔业生态环境重点实验室, 广东 广州 510300

收稿日期:2022-01-13
修回日期:2023-04-25

基金项目:   国家重点研发计划(2020YFD0900401);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金(2021SD08);中国水产科学研究院基本科研业务费(2023TD57);财政部和农业农村部—国家现代农业产业技术体系(CARS-48);广东省现代农业产业技术体系创新团队建专项资金(2023KJ149)。 

关键词: 养殖尾水 , 钝顶螺旋藻 , 牟氏角毛藻 , 盐藻 , 氮磷营养盐

Comparison of Three Microalgae for Removing Nitrogen and Phosphorus from the Tail Waters of Intensive Seawater Shrimp Aquaculture

1. Zhejiang Ocean University, National Engineering Research Center for Marine Aquaculture, Zhoushan 316022, P.R. China;

2. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, P.R. China

Received Date:2022-01-13
Accepted Date:2023-04-25

Keywords: tail water of the intensive shrimp aquaculture system , Spirulina platensis , Chaetoceros muelleri , Dunaliella sp. , nitrogen and phosphorus nutrients

基于对虾生物絮团集约化养殖尾水含有高浓度硝态氮和磷酸盐的特征,比较分析钝顶螺旋藻(Spirulina platensis)、牟氏角毛藻(Chaetoceros muelleri)、盐藻(Dunaliella sp.)3种微藻在配制尾水中的存活生长状况及其对无机氮磷的去除效果,以期筛选出适宜的微藻用于后续尾水净化技术。采用显微镜计数法测定藻细胞密度,国标法测定总无机氮、氨氮、硝态氮、亚硝态氮和磷酸盐的含量。结果显示,钝顶螺旋藻在试验前后的藻细胞密度变化不大(P>0.05),约为3.32×106个/mL和5.88×106个/mL;牟氏角毛藻和盐藻细胞密度有明显增加(P<0.05),分别从初始的4.00×104个/mL和2.50×105个/mL升高至试验结束时的1.66×106个/mL和1.06×107个/mL。经过16 d试验,钝顶螺旋藻组对硝态氮和总无机氮去除率分别为79.60%和46.06%,显著高于其他各组(P<0.05),第8天时对磷酸盐的去除率可高达98.55%;牟氏角毛藻组16 d的磷酸盐去除率为98.25%,显著高于其他各组(P<0.05)。研究表明,3种微藻均可在对虾养殖尾水环境中存活,且对尾水氮磷具有较好的净化效果。

Using tail waters from an intensive biofloc shrimp aquaculture system with high concentrations of inorganic nitrogen and phosphorus, we compared the growth of three microalgae species (Spirulina platensis, Chaetoceros muelleri, Dunaliella sp.) in the tail water and their removal of inorganic nitrogen and phosphorus. Our aim was to provide data to support screening for and obtaining microalgae that are effective for tail water purification. Tail water collected from the shrimp aquaculture system were adjusted for testing to an N:P ratio of 13:1 after sterilization. Treatments with each algae species and a control group were run in triplicate, with initial microalgae concentrations of 3.32×106 cells/mL in the S. platensis group, 2.50×105 cells/mL in the Dunaliella sp. group and 4.00×104 cells/mL in the C. muelleri group. The test lasted for 16 days, and microalgae samples were collected before and after the test to determine changes in the cell density of each microalgae species by microscope counting. The removal of total inorganic nitrogen, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, and phosphate in the tail water was analyzed by comparing the concentrations of each nutrient on day 0, 2, 4, 6, 8 and 16 of the test, using national standard methods. The cell density of S. platensis did not change significantly during the experiment, remaining at ~3.32×106 cells/mL (P>0.05). The cell densities of Dunaliella sp. and C. muelleri increased significantly, from initial concentrations of 2.50×105 cells/mL and 4.00×104 cells/mL to final densities 1.06×107 cells/mL and 1.66×106 cells/mL (P<0.05). The removal rates of nitrate nitrogen and total inorganic nitrogen in S. platensis treatment were respectively, 79.60% and 46.06%, significantly higher than those in the other groups (P<0.05), and the highest removal rate (98.55%) of phosphate was on day 8. The removal rate of phosphate in C. muelleri treatment was 98.25% on day 16, significantly higher than that in other groups (P<0.05). In conclusion, the three microalgae species grew well in the tail water from intensive shrimp aquaculture, removal of inorganic nitrogen and phosphorus was effective, and S. platensis was the best, overall, for the biological purification of tail water.

参考文献

[1] 曹煜成,李卓佳,胡晓娟,等,2017. 磷浓度与氮磷比对蛋白核小球藻氮磷吸收效应的影响[J]. 生态科学, 36(5):34-40.
[2] 范鹏程,徐武杰,文国樑,等,2019. 基于生物絮团技术构建的零换水养殖系统对凡纳滨对虾高密度养殖效果分析[J]. 南方农业学报, 50(12):2833-2840.
[3] 胡海燕,2007. 水产养殖废水氨氮处理研究[D]. 青岛:中国海洋大学.
[4] 胡海燕,单宝田,金卫红,等 2009. 一株淡水螺旋藻的盐度驯化及其净化养殖废水作用[J]. 渔业现代化, 36(1):1-4,17.
[5] 慧敏,2013. 钝顶螺旋藻培养及其对富营养化水体中氮磷的去除[D]. 呼和浩特:内蒙古大学.
[6] 金彬明,曾国权,2004. 牟氏角毛藻培养技术[J]. 中国水产, (10):73-74.
[7] 李元翔,2019. 杜氏盐藻类胡萝卜素代谢对光强和光质变化的响应机制[D]. 北京:中国科学院大学.
[8] 刘磊,杨雪薇,陈朋宇,等,2014. 3种微藻对人工污水中氮磷去除效果的研究[J]. 广东农业科学, 41(11):172-176,201.
[9] 刘林林,黄旭雄,危立坤,等,2014. 15株微藻对猪场养殖污水中氮磷的净化及其细胞营养分析[J]. 环境科学学报, 34(8):1986-1994.
[10] 刘梅,原居林,何海生,等,2018. 微藻在南美白对虾养殖废水中的生长及净化效果[J]. 应用与环境生物学报, 24(4):866-872.
[11] 刘盼,贾成霞,杨慕,等,2018. 2种微藻对养殖水体中氨氮和亚硝态氮的净化作用[J]. 水产科学, 37(3):389-393.
[12] 刘庆辉,余祥勇,叶孝飞,等, 2021. 4种饵料微藻对水产养殖废水的净化效果研究[J]. 水产科技情报, 48(5):267-273.
[13] 刘庆辉,余祥勇,张鹤千,等,2019. 微藻对水产养殖尾水中氮磷去除效果的研究进展——基于水产养殖尾水资源化利用角度分析[J]. 水产科技情报, 46(5):290-295.
[14] 刘婷,2018. 钝顶螺旋藻对含盐二级出水营养物质去除及回收特性研究[D]. 济南:山东大学.
[15] 罗婉仪,雷泽湘,李义勇, 2021. 生物絮团中微生物群落的功能、结构及其调控研究进展[J]. 中国农学通报, 37(24):91-96.
[16] 庞昊,2021. 微藻处理海水养殖废水及工艺提升研究[D]. 大连:大连理工大学.
[17] 邵营泽,李信书,吴建新,等,2005. 盐度对螺旋藻的生长和生化成分的影响[J]. 科学养鱼, (9):42-43.
[18] 王少沛,李卓佳,曹煜成,等, 2009. 微绿球藻、隐藻、颤藻的种间竞争关系[J]. 中国水产科学, 16(5):765-772.
[19] 王申,高珊珊,蒋力,等,2018. 水产养殖系统氮磷营养盐收支及其生态影响研究[J]. 水产学杂志, 31(5):50-57.
[20] 谢丽娟,2019. 牟氏角毛藻培养特性及在对虾养殖尾水处理中的研究[D]. 福州:福建师范大学.
[21] 徐武杰, 2014. 生物絮团在对虾零水交换养殖系统中功能效应的研究与应用[D]. 青岛:中国海洋大学.
[22] 徐武杰,文国樑,曹煜成,等,2020. 浅谈水产养殖尾水的生态处理技术[J]. 南方农业, 14(27):181-182.
[23] 姚丹,黄忠华,雷光鸿,等,2012. 螺旋藻提取研究概述[J]. 轻工科技, 28(3):16-17,66.
[24] 叶志娟,2006. 牟氏角毛藻和盐藻对不同种类海水养殖废水生长和生理反应的研究[D]. 南京:南京农业大学. 叶志娟,刘兆普,王长海,2006. 牟氏角毛藻在海水养殖废水中的生长及其对废水的净化作用[J]. 海洋环境科学, (3):9-12.
[25] 叶志娟,刘兆普,2015. 盐藻在海水养殖废水中的生长及对废水的净化作用[J]. 湖北农业科学, 54(1):39-42.
[26] 于宗赫,黄文,马文刚,等,2021. 牟氏角毛藻和海洋红酵母对玉足海参浮游幼体发育、生长及成活率的影响[J]. 水产学报, 45(12): 2003-2010.
[27] 虞海天, 2014. 杜氏盐藻中β-胡萝卜素的提取纯化及制备生物燃料的研究[D]. 呼和浩特:内蒙古大学.
[28] 张诚,邹景忠,1997. 尖刺拟菱形藻氮磷吸收动力学以及氮磷限制下的增殖特征[J]. 海洋与湖沼, (6):599-603.
[29] 张特,2012. 凡纳滨对虾仔虾能量代谢及藻菌对育苗水体和废水调控作用研究[D]. 湛江:广东海洋大学.
[30] 张新明,赵璐,张衡,等,2021. 盐藻的营养价值及其在动物生产中的应用[J]. 养殖与饲料, 20(4):36-37.
[31] 张燕鹏,2020. 食品工业废水培养钝顶螺旋藻过程中的污染物去除和藻蓝蛋白生产[D]. 哈尔滨:哈尔滨工业大学.
[32] 张扬,刘亚梦,高苑融,等,2011. 农村生活污水培养杜氏盐藻的初步研究[J]. 黑龙江农业科学, (6):39-41.
[33] Ansari F A, Singh P, Guldhe A, et al, 2017. Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation[J]. Algal Research, 21:169-177.
[34] Cheirsilp B, Torpee S, 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation[J]. Bioresource Technology, 110:510-516.
[35] El-Araby D A, Amer S A, Attia G A, et al, 2022. Dietary Spirulina platensis phycocyanin improves growth, tissue histoarchitecture, and immune responses, with modulating immunoexpression of CD3 and CD20 in Nile tilapia, Oreochromis niloticus[J]. Aquaculture, DOI: 10.1016/J.AQUACULTURE.2021.737413
[36] Félix D M, Elías J A L, Córdova A I C, et al, 2017. Survival of Litopenaeus vannemei shrimp fed on diets supplemented with Dunaliella sp. is improved after challenges by Vibrio parahaemolyticus[J]. Journal of Invertebrate Pathology, 148:118-123.
[37] Guo Z, Liu Y, Guo H Y, et al, 2013. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production[J]. Journal of Environmental Sciences, 25(S1):85-88.
[38] Ray A J, Seaborn G, Leffler J W, et al, 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management[J]. Aquaculture, 310:130-138.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

3种微藻对海水集约化对虾养殖尾水氮磷的去除效果