首页 >  水生态学杂志 >  长江中游航道整治工程区沉积物及有机质变化

2020, 41(1): 53-59. doi: 10.15928/j.1674-3075.2020.01.008

长江中游航道整治工程区沉积物及有机质变化

1. 中国水产科学研究院长江水产研究所, 湖北 武汉 430223;

2. 南京农业大学无锡渔业学院, 江苏 无锡 214081;

3. 长江航道规划设计研究院, 湖北 武汉 430011;

4. 长江武汉航道局, 湖北 武汉 430010

收稿日期:2018-10-07

基金项目:   国家重点研发计划资助(National Key R&D Program of China)-2018YFD0900901;长江中下游水下航道整治工程区生境恢复过程研究;生态环境部生物多样性调查、观测和评估项目(2019-2023年)。 

关键词: 粒度特征 , 有机质含量 , 沉积物 , 航道整治 , 长江中游

Sediment and Organic Matter Dynamics in Channel Project Areas of the Middle Yangtze River

1. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, P. R. China;

2. Wuxi Fishery College NAU, Wuxi 214081, P. R. China;

3. Changjiang Waterway Planning, Design and Research Institute, Wuhan 430011, P. R. China;

4. Wuhan Waterway Bureau of the Yangtze River, Wuhan 430010, P. R. China

Received Date:2018-10-07

Keywords: sediment grain size , organic matter content , surface sediments , channel regulation projects , the middle reaches of the Yangtze River

为了探究长江中游航道整治水下工程区不同恢复阶段沉积物粒度和有机质含量特征与变化规律,2017年3月、6月、9月分别对长江中游6个恢复时间分别为2、3、4、5、10、15年的航道整治工程区进行了沉积物采集,室内利用Master size 2000型激光粒度仪进行分析,并采用MMFr矩值法公式计算粒度特征,灼烧法测量沉积物有机质含量,分析沉积物粒度和有机质含量随恢复时间的变化情况,以及粒度特征参数和有机质含量之间的关系。结果表明,长江中游护岸水下工程区沉积物组成主要以砂为主,粘土、粉砂和砂的平均含量分别是(7.34±4.58)%、(24.26±1.00)%和(68.39±14.06)%。表层沉积物的粒径2.43~6.79φ,平均值是3.95φ,中值粒径2.41~6.05φ,平均值为3.65φ,整体上粒径偏小。工程恢复越久,小颗粒组分占比越高,平均粒径越大;有机质含量随工程恢复时间的增长而增高,河流的涨枯期对有机质含量的影响不显著;表层沉积物中粘土和粉砂总含量、平均粒径、中值粒径与有机质含量关系极显著。本研究结果既符合河流纵向沉积物粒度分布规律,也反映了时间尺度对沉积物粒度组成和有机质含量的影响。

Discharge from Three Gorges Reservoir has caused bank collapse in the middle reaches of Yangtze River. To fortify banks, hydraulic structures have been constructed to decrease flow and promote deposition of clay and sand. In this study, we analyzed the grain size and organic content of sediments in channel regulation areas of the middle Yangtze River at different stages. The objectives were to explore the dynamics of changing particle size and organic matter content after construction of hydraulic structure and the relationship between organic matter content and particle size. The study provides basic data for habitat remediation by construction of channel regulation projects. In March, June and September of 2017, sediments were collected in areas with hydraulic structures in place for periods of 2, 3, 4, 5, 10 and 15 years. The Master Size 2000 instrument and MMFr formula were used to characterize grain size of sediment samples and the combustion method was used to determine organic content. Results show that sand was the main component in sediments. The average proportions of clay, silt and sand for the sediments were, respectively, (7.34±4.58)%, (24.26±1.00)% and (68.39±14.06)%. The particle size range of surface sediments was 2.43-6.79φ (average, 3.95φ) and median particle diameter range of 2.41-6.05φ (average, 3.65φ). The particles were generally small. The proportion of organic matter in the sediment ranged from 1.06% to 4.82%[average, (3.06±1.30)%]. Organic matter content varied with season:(2.75±1.05)% in March, (3.65±1.01)% in June and (2.80±1.46)% in September. The longer the recovery project operated, the higher the proportion of small particles accounted for and the larger the average particle size was. The proportion of organic matter increased with time, but no distinct relationship was found between organic matter content and wet/dry periods. The total content of clay and silt, average particle size and median particle size of sediments all correlated significantly with organic matter content. The results of this study are consistent with the normal distribution pattern of sediment grain size and reflect the influence of time on grain size composition and organic matter content in river sediments.

参考文献

[1] 蔡国富, 范代读, 尚帅, 等,2014. 图解法与矩值法计算的潮汐沉积粒度参数之差异及其原因解析[J]. 海洋地质与第四纪地质, 34(1):195-204.
[2] 傅开道, 杨文辉, 苏斌, 等,2015. 流域环境变化的河流沉积物粒度响应——澜沧江案例[J]. 地理科学进展, 34(9):1148-1155.
[3] 黄鹏程,2016. 三峡典型淤积河段细颗粒泥沙理化特性研究[D]. 重庆:重庆交通大学.
[4] 黄向青, 梁开, 夏真,等,2014. 广西近岸海域水下平原表层沉积物中有机质分布及其积累[J]. 广西科学院学报, 30(2):112-119.
[5] 金相灿, 屠清瑛,1990. 湖泊富营养化调查规范(第2版)[M]. 北京:中国环境科学出版社.
[6] 刘红, 何青, 王元叶, 等,2007 长江口表层沉积物粒度时空分布特征[J]. 沉积学报, 25(3):445-455.
[7] 刘金铃, 李柳强, 林慧娜,等,2008. 中国主要红树林区沉积物粒度分布特征[J]. 厦门大学学报(自然版), 47(6):891-893.
[8] 刘宪斌,李孟沙,梁梦宇,等,2016. 曹妃甸近岸海域表层沉积物粒度特征及其沉积环境[J]. 矿物岩石地球化学通报,35(3):507-514.
[9] 马倩倩, 魏星, 吴莹, 等,2015. 三峡大坝建成后长江河流表层沉积物中有机物组成与分布特征[J]. 中国环境科学, 35(8):2485-2493.
[10] 施少华, 林承坤, 杨桂山. 2002. 长江中下游河道与岸线演变特点[J]. 长江流域资源与环境, 11(1):69-73.
[11] 宋静宜, 傅开道, 苏斌, 等,2013. 澜沧江水系底沙重金属含量空间分布及其污染评价[J]. 地理学报, 68(3):389-397.
[12] 唐洪武, 李福田, 肖洋,等,2002. 四面体框架群护岸型式防冲促淤效果试验研究[J]. 水运工程, (9):25-28.
[13] 王启栋, 宋金明, 李学刚,等,2015. 黄河口湿地有机碳来源及其对碳埋藏提升策略的启示[J]. 生态学报, 35(2):568-576.
[14] 王圣瑞, 赵海超, 周小宁,等,2004. 五里湖与贡湖不同粒径沉积物中有机质、总氮和磷形态分布研究[J]. 环境科学研究, 17(S1):11-14.
[15] 王兆夺, 于东生,2015. 泉州湾表层沉积物粒度特征分析[J]. 应用海洋学学报, 34(3):326-333.
[16] 吴才武, 夏建新, 段峥嵘,等,2015. 土壤有机质测定方法述评与展望[J]. 土壤, 47(3):453-460.
[17] 燕文明, 刘凌, 周利,等, 2015. 里下河地区代表性浅水湖泊表层沉积物可转化态氮的赋存特征[J]. 水资源保护, 31(5):30-34.
[18] 杨石磊. 2014. 实体丁坝群与透水桩坝护岸机理试验研究[D]. 西安:西北农林科技大学.
[19] 于培松, 薛斌, 潘建明,等,2011. 长江口和东海海域沉积物粒径对有机质分布的影响[J]. 海洋学研究, 29(3):202-208.
[20] 张富元,章伟艳,杨群慧,2003.南海东部海域沉积物粒度分部特征[J].沉积学报,21(3):452-460.
[21] 张功瑾, 路川藤, 罗小峰,等,2017. 长江口深水航道治理工程不同阶段北槽丁坝群坝田泥沙冲淤分析[J]. 水运工程, (9):121-125.
[22] 张晓东, 翟世奎, 许淑梅,2007. 长江口外近海表层沉积物粒度的级配特性及其意义[J]. 中国海洋大学学报(自然科学版), 37(2):328-334.
[23] 朱耀军, Bourgeois C, 林广旋,等,2012. 湛江高桥红树林表层沉积物的粒度空间分布特征[J]. 应用生态学报,23(8):2114-2120.
[24] 祝贺, 孙志高, 衣华鹏,等,2017. 曹妃甸近岸表层沉积物粒度和粘土矿物分布特征研究[J]. 地球与环境, 45(3):306-313.
[25] Folk R L, Ward W C, 1957. Brazos river bar:a study in the signification of grain size parameters[J]. Journal of Sedimentary Petrology, 27:3-27.
[26] Gibbs J R, 1997. Clay mineral segregation in the marine environment[J]. Journal of Sedimentary Research, (1):237-243.
[27] Keil R G, Tsamakis E, Giddings J C, et al, 1998. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast[J]. Geochimica Et Cosmochimica Acta, 62(8):1347-1364.
[28] Lin S, Hsieh I J, Huang K M, et al, 2002, Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments[J]. Chemical Geology, 182(2):377-394.
[29] Rice S, 1998. Which tributaries disrupt downstream fining along gravel-bed rivers?[J]. Geomorphology, 22(1):39-56.
[30] Roux J P L, O'Brien R D, Rios F, et al, 2002. Analysis of sediment transport paths using grain-size parameters[J]. Computers & Geosciences, 28(5):717-721.
[31] Trefethen J M, 1950. Classification of sedimentents[J]. American Journal of Science, 248:55-62.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

长江中游航道整治工程区沉积物及有机质变化