Effects and potential mechanism of oyster peptide on paroxetine-induced sexual dysfunction in male mice
-
摘要: 牡蛎肽 (Oyster peptide, OP) 具有多种生物活性,然而,其对男性性功能障碍的作用效果仍知之甚少。以牡蛎肽为研究对象,探讨其对男性性功能障碍的作用效果及其潜在机制。每天灌胃帕罗西汀 (Paroxetine, PRX) 构建雄性小鼠性功能障碍模型,同时灌胃牡蛎肽 (500 mg·kg−1),持续28 d。结果表明:与模型 (PRX) 组小鼠相比,牡蛎肽可显著提高雄性小鼠的性能力 (P<0.05),恢复血清性激素水平 (P<0.01),提高阴茎组织一氧化氮 (NO) 含量 (P<0.01)、环磷酸鸟苷 (cGMP) 含量 (P<0.05), 和一氧化氮合酶 (NOS) 活性 (P<0.05),并降低磷酸二酯酶-5 (PDE-5) 活性 (P<0.01);同时,牡蛎肽可增强睾丸标志性酶活性 (P<0.05) 和抗氧化能力 (P<0.01),改善精子质量。此外,HE染色结果显示:牡蛎肽可恢复小鼠睾丸生精小管内生精细胞的数量与形态,减少生精小管空泡化现象。综上所述,牡蛎肽可有效减缓PRX导致的雄性小鼠性功能障碍,推测其对男性性功能障碍具有潜在的保护作用。Abstract: Oyster peptide (OP) has various biological activities. However, its effects on male sexual dysfunction is still poorly understood. In this study, we explored its effects and potential mechanism on male sexual dysfunction. Besides, we established a paroxetine (PRX)-induced sexual dysfunction model by gavaging OP (500 mg·kg− 1) in mice for 28 d. The results show that compared with the model (PRX) group, OP could improve the sexual performance of male mice (P<0.05), restored serum sex hormone levels (P<0.01), increased penile tissue nitric oxide (NO) content (P<0.01), cyclic guanosine monophosphate (cGMP) content (P<0.05) and nitric oxide synthase (NOS) activity (P<0.05), and decreased phosphodiesterase-5 (PDE-5) activity (P<0.01). Meanwhile, OP enhanced testicular marker enzymes activities (P<0.05) and antioxidant capacity (P<0.01), and improved sperm quality. In addition, HE staining results show that OP could restore the number and morphology of spermatogenic cells in seminiferous tubules of mice, and reduced the vacuolization of seminiferous tubules. In conclusion, OP can alleviate PRX-induced sexual dysfunction effectively in male mice and has a potential protective effect on male sexual dysfunction.
-
Key words:
- Oyster peptide /
- Paroxetine /
- Sexual dysfunction /
- Erectile dysfunction /
- Sexual behavior
-
-
表 1 牡蛎肽游离氨基酸含量分析
Table 1. Analysis of free amino acid content of oyster peptid
序号
No.游离氨基酸
Free amino acid质量分数或含量
Mass fraction or content/%1 天门冬氨酸 Asp 0.39±0.032 2 苏氨酸 Thr① 0.41±0.031 3 丝氨酸 Ser 0.30±0.021 4 谷氨酸 Glu 0.86±0.052 5 脯氨酸 Pro② 0.07±0.015 6 甘氨酸 Pro 0.31±0.033 7 丙氨酸 Ala② 1.26±0.065 8 胱氨酸 Cys 0.04±0.000 9 缬氨酸 Val①②③ 0.57±0.145 10 蛋氨酸 Met②③ 0.26±0.036 11 异亮氨酸 Ile①②③ 0.76±0.111 12 亮氨酸 Leu①②③ 1.68±0.166 13 酪氨酸 Tyr 0.96±0.030 14 苯丙氨酸 Phe①② 1.13±0.267 15 赖氨酸 Lys① 2.14±0.248 16 组氨酸 His 0.29±0.019 17 精氨酸 Arg 2.68±0.142 氨基酸总量
Total amino acid, TAA14.10 疏水性氨基酸
Hydrophobic amino acid, HAA5.74 必需氨基酸
Essential amino acid, EAA6.95 支链氨基酸
Branched-chain amino acids, BCAA3.01 EAA/TAA (%) 49.29 BCAA/TAA (%) 21.35 HAA/TAA (%) 40.71 注:n=3;① 必需氨基酸;② 疏水性氨基酸;③ 支链氨基酸。 Note: n=3; ① Essential amino acid; ② Hydrophobic amino acid; ③ A branched-chain amino acid. 表 2 牡蛎肽对脏器系数的影响
Table 2. Effect of oyster peptid on organ coefficient
% 项目
Item空白组
CN模型组
PRX阳性组
PRX+SDF牡蛎肽组
PRX+OP心脏 Heart 0.599±0.067 0.581±0.072 0.597±0.082 0.622±0.079 胸腺 Thymus 0.11±0.029 0.104±0.021 0.116±0.46 0.113±0.022 脾 Lien 0.328±0.023 0.305±0.026 0.335±0.042 0.309±0.041 肝脏 Liver 5.106±0.586 4.798±0.351 5.004±0.581 5.018±0.306 肾脏 Ren 1.682±0.117 1.629±0.094 1.638±0.151 1.669±0.069 肺 Lung 0.657±0.061 0.637±0.048 0.641±0.034 0.652±0.039 阴茎 Penis 0.120±0.019 0.109±0.026 0.119±0.017 0.119±0.012 睾丸 Testis 0.759±0.083 0.629±0.061*** 0.699±0.069# 0.685±0.037# 精囊腺 Seminal vesicle 0.839±0.108 0.574±0.097*** 0.687±0.084# 0.731±0.061### -
[1] CHEN L, SHI G R, HUANG D D, et al. Male sexual dysfunction: a review of literature on its pathological mechanisms, potential risk factors, and herbal drug intervention[J]. Biomed Pharmacother, 2019, 112: 108585. doi: 10.1016/j.biopha.2019.01.046
[2] RAHMAN A U, ALAM F, REHMAN Z U, et al. Effects of Mirabilis jalapa L. root extract and sildenafil on paroxetine-induced sexual dysfunction in male rats and characterization of its phytoconstituents by UPLC-MS[J]. S Afr J Bot, 2023, 152: 240-246. doi: 10.1016/j.sajb.2022.12.004
[3] ERDEMIR F, ATILGAN D, FIRAT F, et al. The effect of sertraline, paroxetine, fluoxetine and escitalopram on testicular tissue and oxidative stress parameters in rats[J]. Int Braz J Urol, 2014, 40: 100-108. doi: 10.1590/S1677-5538.IBJU.2014.01.15
[4] NAJAFABADI B T, FARSINEJAD M, SHOKRAEE K, et al. Possible effects of saffron (Crocus sativus) in the treatment of erectile dysfunction: a randomized, double-blind, placebo-controlled trial[J]. J Herb Med, 2022, 32: 100551. doi: 10.1016/j.hermed.2022.100551
[5] FARNIA V, ALIKHANI M, EBRAHIMI A, et al. Ginseng treatment improves the sexual side effects of methadone maintenance treatment[J]. Psychiat Res, 2019, 276: 142-150. doi: 10.1016/j.psychres.2019.05.004
[6] KOLOKO B L, BUSHRA I, WANKEU-NYA M, et al. In vivo effects of Rauvolfia vomitoria (Apocynaceae) ethanolic extract on sexual performance and reproductive activity in male rats[J]. Andrologia, 2020, 52(1): e13414.
[7] LI L, CHEN B B, AN T, et al. BaZiBuShen alleviates altered testicular morphology and spermatogenesis and modulates Sirt6/P53 and Sirt6/NF-κB pathways in aging mice induced by D-galactose and NaNO2[J]. J Ethnopharmacol, 2021, 271: 113810. doi: 10.1016/j.jep.2021.113810
[8] ALLOUH M Z, DARADKA H M, BARBARAWI M M A, et al. Fresh onion juice enhanced copulatory behavior in male rats with and without paroxetine-induced sexual dysfunction[J]. Exp Biol Med, 2014, 239(2): 177-182. doi: 10.1177/1535370213508360
[9] TEIXEIRA T M, BOEFF D D, de OLIVEIRA CARVALHO L, et al. The traditional use of native Brazilian plants for male sexual dysfunction: evidence from ethnomedicinal applications, animal models, and possible mechanisms of action[J]. Biomed Pharmacother, 2023: 116876.
[10] 郑环宇, 高加龙, 章超桦, 等. 华贵栉孔扇贝肉及其酶解产物对半去势雄性大鼠生殖能力的影响[J]. 南方水产科学, 2021, 17(3): 94-101.
[11] QIONG L, JUN L, JUN Y, et al. The effect of Laminaria japonica polysaccharides on the recovery of the male rat reproductive system and mating function damaged by multiple mini-doses of ionizing radiations[J]. Environ Toxicol Phar, 2011, 31(2): 286-294. doi: 10.1016/j.etap.2010.11.006
[12] IBRAHIM N M, IBRAHIM S R, ASHOUR O H, et al. The effect of red seaweed (Chondrus crispus) on the fertility of male albino rats[J]. Saudi J Biol Sci, 2021, 28(7): 3864-3869. doi: 10.1016/j.sjbs.2021.03.059
[13] JE J G, KIM H S, LEE H G, et al. Low-molecular weight peptides isolated from seahorse (Hippocampus abdominalis) improve vasodilation via inhibition of angiotensin-converting enzyme in vivo and in vitro[J]. Process Biochem, 2020, 95: 30-35. doi: 10.1016/j.procbio.2020.04.016
[14] RYU B M, KIM M J, HIMAYA S W A, et al. Statistical optimization of high temperature/pressure and ultra-wave assisted lysis of Urechis unicinctus for the isolation of active peptide which enhance the erectile function in vitro[J]. Process Biochem, 2014, 49(1): 148-153. doi: 10.1016/j.procbio.2013.09.019
[15] 张雪妍, 秦小明, 高加龙, 等. 牡蛎酶解工艺优化及其酶解产物对小鼠睾酮分泌的影响[J]. 广东海洋大学学报, 2019, 39(3): 96-102.
[16] 章超桦. 牡蛎营养特性及功能活性研究进展[J]. 大连海洋大学学报, 2022, 37(5): 719-731.
[17] 朱国萍, 章超桦, 曹文红, 等. 牡蛎酶解产物对小鼠学习记忆的影响[J]. 广东海洋大学学报, 2021, 41(4): 84-92.
[18] ZHANG C, LV J T, QIN X M, et al. Novel antioxidant peptides from crassostrea hongkongensis improve photo-oxidation in UV-induced HaCaT Cells[J]. Mar Drugs, 2022, 20(2): 100. doi: 10.3390/md20020100
[19] ZHANG Z R, SU G W, ZHOU F B, et al. Alcalase-hydrolyzed oyster (Crassostrea rivularis) meat enhances antioxidant and aphrodisiac activities in normal male mice[J]. Food Res Int, 2019, 120: 178-187. doi: 10.1016/j.foodres.2019.02.033
[20] 张婷, 秦小明, 章超桦, 等. 牡蛎酶解产物改善睡眠作用效果研究[J]. 大连海洋大学学报, 2021, 36(3): 430-436.
[21] ZHANG W W, WEI Y F, CAO X X, et al. Enzymatic preparation of Crassostrea oyster peptides and their promoting effect on male hormone production[J]. J Ethnopharmacol, 2021, 264: 113382. doi: 10.1016/j.jep.2020.113382
[22] LUO X L, LIU W X, ZHONG H, et al. Synergistic effect of combined oyster peptide and ginseng extracts on anti-exercise-fatigue and promotion of sexual interest activity in male ICR mice[J]. J Funct Foods, 2021, 86: 104700. doi: 10.1016/j.jff.2021.104700
[23] 黄艳球. 牡蛎肉及其酶解产物对半去势雄性大鼠性功能的影响[D]. 湛江: 广东海洋大学, 2019: 12-19.
[24] ZHANG X Y, PENG Z L, ZHENG H N, et al. The potential protective effect and possible mechanism of peptides from oyster (Crassostrea hongkongensis) hydrolysate on triptolide-induced testis injury in male mice[J]. Mar Drugs, 2021, 19(10): 566. doi: 10.3390/md19100566
[25] ADEMOSUN A O, ADEBAYO A A, OBOH G. Anogeissus leiocarpus attenuates paroxetine-induced erectile dysfunction in male rats via enhanced sexual behavior, nitric oxide level and antioxidant status[J]. Biomed Pharmacother, 2019, 111: 1029-1035. doi: 10.1016/j.biopha.2019.01.022
[26] 张锴佳, 张雪妍, 秦小明, 等. 香港牡蛎酶解产物对雷公藤甲素诱导雄性小鼠生精障碍的影响[J]. 大连海洋大学学报, 2022, 37(6): 941-948.
[27] KHALID M, ALQARNI M H, WAHAB S, et al. Ameliorative sexual behavior and phosphodiesterase-5 inhibitory effects of Spondias mangifera fruit extract in rodents: in silico, in vitro, and in vivo study[J]. J Clin Sleep Med, 2022, 11(13): 3732. doi: 10.3390/jcm11133732
[28] CANPOLAT S, ULKER N, YARDIMCI A, et al. Irisin ameliorates male sexual dysfunction in paroxetine-treated male rats[J]. Psychoneuroendocrino, 2022, 136: 105597. doi: 10.1016/j.psyneuen.2021.105597
[29] 方磊, 张瑞雪, 陈亮, 等. 牡蛎肽对TM3细胞性功能的影响[J]. 中国食品学报, 2021, 21(5): 140-147.
[30] HOU Y Q, WU G Y. Nutritionally essential amino acids[J]. Adv Nutr, 2018, 9(6): 849-851. doi: 10.1093/advances/nmy054
[31] 陈义明, 孙瑞坤, 张帅, 等. 圆舵鲣暗色肉酶解物5 ku组分的抗氧化活性与抗疲劳作用[J]. 广东海洋大学学报, 2017, 37(4): 92-97. doi: 10.3969/j.issn.1673-9159.2017.04.014
[32] 葛晓鸣, 顾伟, 徐永健. 海马水解蛋白的氨基酸组成与抗氧化能力的关系[J]. 核农学报, 2019, 33(2): 322-329. doi: 10.11869/j.issn.100-8551.2019.02.0322
[33] 陈悦, 李路, 闫朝阳, 等. 小分子牡蛎多肽对雄性小鼠性功能的影响[J]. 基因组学与应用生物学, 2019, 38(1): 109-116. doi: 10.13417/j.gab.038.000109
[34] SCHULSTER M, BERNIE A M, RAMASAMY R. The role of estradiol in male reproductive function[J]. Asian J Androl, 2016, 18(3): 435. doi: 10.4103/1008-682X.173932
[35] SAIKIA Q, HAZARIKA A, KALITA J C. Isoliquiritigenin ameliorates paroxetine-induced sexual dysfunction in male albino mice[J]. Reprod Toxicol, 2023: 108341.
[36] EL-GAAFARAWI I, HASSAN M, FOUAD G, et al. Toxic effects of paroxetine on sexual and reproductive functions of rats[J]. Egypt J Hosp Med, 2005, 21(1): 16-32. doi: 10.21608/ejhm.2005.18045
[37] YAKUBU M T, JIMOH R O. Carpolobia lutea roots restore sexual arousal and performance in paroxetine-induced sexually impaired male rats[J]. Rev Int Androl, 2014, 12(3): 90-99.
[38] AJIBOYE T O, NURUDEEN Q O, YAKUBU M T. Aphrodisiac effect of aqueous root extract of Lecaniodiscus cupanioides in sexually impaired rats[J]. J Basic Clin Physiol Pharmacol, 2014, 25(2): 241-248.
[39] ZHANG Y F, YANG J Y, MENG X P, et al. L-arginine protects against T-2 toxin-induced male reproductive impairments in mice[J]. Theriogenology, 2019, 126: 249-253. doi: 10.1016/j.theriogenology.2018.12.024
[40] BOLNICK J M, KILBURN B A, BOLNICK A D, et al. Sildenafil stimulates human trophoblast invasion through nitric oxide and guanosine 3', 5'-cyclic monophosphate signaling[J]. Fertil Steril, 2015, 103(6): 1587-1595.e2. doi: 10.1016/j.fertnstert.2015.02.025
[41] DEGIONI A, CAMPOLO F, STEFANINI L, et al. The NO/cGMP/PKG pathway in platelets: the therapeutic potential of PDE5 inhibitors in platelet disorders[J]. J Thromb Haemost, 2022, 20(11): 2465-2474. doi: 10.1111/jth.15844
[42] PACHER P, BECKMAN J S, LIAUDET L. Nitric oxide and peroxynitrite in health and disease[J]. Physiol Rev, 2007, 87(1): 315-424. doi: 10.1152/physrev.00029.2006
[43] YAKUBU M T, JIMOH R O. Aqueous extract of Carpolobia lutea root ameliorates paroxetine-induced anti-androgenic activity in male rats[J]. Middle East Fertil S, 2015, 20(3): 192-197. doi: 10.1016/j.mefs.2014.10.001
[44] OGUNRO O B, YAKUBU M T. Fadogia agrestis (Schweinf. Ex hiern) stem extract restores selected biomolecules of erectile dysfunction in the testicular and penile tissues of paroxetine-treated wistar rats[J]. Reprod Sci, 2023, 30(2): 690-700. doi: 10.1007/s43032-022-01050-6
[45] ADEFEGHA S A, OYELEYE S I, DADA F A, et al. Modulatory effect of quercetin and its glycosylated form on key enzymes and antioxidant status in rats penile tissue of paroxetine-induced erectile dysfunction[J]. Biomed Pharmacother, 2018, 107: 1473-1479. doi: 10.1016/j.biopha.2018.08.128