Effects of preservation methodology on multi-tissue stable isotope signatures of oceanic squid: a case study of jumbo squid (Dosidicus gigas)
-
摘要: 碳、氮稳定同位素技术 (δ13C和δ15N) 是海洋动物摄食生态学研究的主要方法之一。目前对海洋动物各组织的保存方法尚无统一的标准,这可能造成测定结果出现偏差,并产生误导性结论。以大洋性头足类茎柔鱼 (Dosidicus gigas) 为研究对象,开展了冷冻保存 (−20 ℃)、乙醇 (体积分数75%) 与甲醛 (体积分数38%) 溶液保存对肌肉、角质颚和性腺组织δ13C、δ15N和碳氮比 (C/N) 测定的比较研究。结果表明,冷冻保存在第30天时仅对肌肉和性腺组织δ13C和C/N值产生了显著性影响 (P<0.05),偏移量分别为(−0.89±0.30)‰和0.22±0.15,但相比于乙醇和甲醛方法偏移量较小。乙醇保存第30天时,肌肉δ13C、δ15N和C/N值均有显著性变化 (P<0.05),偏移量分别为(−0.41±0.50)‰、(0.76±0.79)‰和0.34±0.05;性腺δ13C和和C/N值存在显著性变化 (P<0.05),偏移量分别为 (−0.36±0.44)‰和 0.21±0.14;而角质颚的变化不显著 (P>0.05)。甲醛保存会导致3种组织的δ13C、δ15N和C/N值出现显著性变化 (P<0.05),30 d后 δ13C 、δ15N和 C/N值总偏移量分别为 (−3.03±1.87)‰、(−0.48±0.72)‰和0.86±0.73,但保存至第180天时仅角质颚和性腺的δ15N和C/N值仍持续增大 (P<0.05),可能与组织特异性有关。因此在分析稳定同位素时,应谨慎使用长时间保存后的软组织样品 (肌肉和性腺),而硬组织 (角质颚) 可采用冷冻或乙醇保存。Abstract: Carbon and nitrogen stable isotope technology (δ13C and δ15N) is an important tool for the study of trophic ecology of marine organisms. However, there is no unified standard for the preservation methods in cephalopods' samples, which may cause biases in stable isotope values and easily lead to misleading conclusions. Thus, we assessed the effects of preservation method (Freezing, 75% ethanol solution and 38% formaldehyde solution) and duration (0, 30 and 180 d) on the stable isotope ratios of carbon and nitrogen of tissues (Muscle, beak and gonad) of jumbo squid (Dosidicus gigas). The results show that freezing affected δ13C and C/N values of muscle and gonad within 30 d (P<0.05), with offsets of (−0.89±0.30)‰ and 0.22±0.15, respectively, which were lower than the effects of alcohol and formaldehyde. After 30 days of storage in the alcohol solution, significant changes were observed for muscle [δ13C: (−0.24±0.42)‰ , δ15N: (0.17±1.07)‰ and C/N: (0.32±0.49)] and gonad [δ13C: (−0.36±0.44), C/N: (0.21±0.14)] (P<0.05), but no significant change was found in beak (P>0.05). Formaldehyde preservation induced a decrease in δ13C [(−3.03±1.87)‰] and δ15N [(−0.48±0.72)‰] but an increase in C/N (0.86±0.73) within 30 d (P<0.05). However, the δ15N and C/N values significantly increased in beak and gonad stored in formaldehyde on the 180th day (P<0.05). Therefore, it should be careful to use the preserved soft tissue samples during stable isotope analysis, while hard tissue, such as horny jaw, can be preserved by freezing or ethanol solution.
-
Key words:
- Dosidicus gigas /
- Stable isotope /
- Freezing /
- Ethanol /
- Formaldehyde
-
表 1 茎柔鱼 3 种组织不同保存方式下的稳定同位素比值
Table 1. δ13C, δ15N values and C/N ratios of different preservation methods in three tissues of D. gigas
组织
Tissue对照
Control−20 ℃ 冷冻
Freezing75% 乙醇
Ethanol38% 甲醛
Formaldehyde第0天
Day 0第30天
Day 30第180天
Day 180第30天
Day 30第180天
Day 180第30天
Day 30第180天
Day 180肌肉 Muscle δ13C −17.97±0.30a −18.73±0.26b −19.31±0.33b −18.40±0.56b −18.47±0.37b −22.36±3.61b −21.66±1.31b δ15N 15.76±2.73a 16.06±2.80a 15.94±3.06 a 16.47±2.58b 16.62±2.71b 14.95±2.17b 16.09±2.60b C/N 3.22±0.07a 3.49±0.06b 3.51±0.12 b 3.57±0.14b 4.25±0.96c 4.79±1.15b 4.66±1.56b 角质颚 Beak δ13C −18.48±0.48a −18.54±0.53a −18.47±0.51a −18.50±0.52a −18.51±0.52a −20.50±2.29b −19.96±1.52b δ15N 10.61±0.98a 10.58±1.10a 10.25±1.14a 10.61±1.17a 11.39±1.02 a 9.85±1.04b 10.82±0.61a C/N 5.38±0.51a 5.56±0.32a 5.52±0.52a 5.47±0.53a 5.46±0.57 a 5.81±0.52b 6.36±0.40c 性腺 Gonad δ13C −17.61±0.79a −18.62±0.87b −18.94±0.56b −17.97±0.58b −18.94±0.56c −21.56±0.85b −21.40±0.80b δ15N 14.88±0.96a 14.82±1.03a 14.22±1.04 a 14.92±1.02a 14.65±1.01a 14.68±1.04b 15.02±1.17c C/N 3.21±0.16a 3.57±0.33b 3.55±0.35 b 3.42±0.13b 3.91±0.22c 3.97±0.36b 3.93±0.37c 注:同行数据不同上标字母表示有显著性差异 (P<0.05)。 Note: Values in each row followed by different superscript letters were significant differences (P<0.05). -
ROUNICK J S, WINTERBOURN M J. Stable carbon isotopes and carbon flow in ecosystems[J]. Bioscience, 1986, 36: 171-177. doi: 10.2307/1310304
HOBSON K A, PIATT J F, PITOCCHELLI J. Using stable isotopes to determine seabird trophic relationships[J]. J Anim Ecol, 1994, 63(4): 786-798. doi: 10.2307/5256
PETERSON B J, FRY B. Stable isotopes in ecosystem studies[J]. Ann Rev Ecol System, 1987, 18: 293-320. doi: 10.1146/annurev.es.18.110187.001453
WAN Y, HU J Y, AN L H, et al. Determination of trophic relationships within a Bohai Bay food web using stable δ15N and δ13C analysis[J]. Chin Sci Bull, 2005, 50(10): 1021-1025. doi: 10.1360/04wd0283
HUSSEY N E, MACNEIL M A, OLIN J A, et al. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions[J]. J Fish Biol, 2012, 80(5): 1449-1484. doi: 10.1111/j.1095-8649.2012.03251.x
GAO X D, GONG Y, CHEN X J, et al. Dietary shifts and niche partitioning throughout ontogeny avoid intraspecific competition in a pelagic generalist predator[J]. Mar Ecol Prog Ser, 2022, 692: 81-97. doi: 10.3354/meps14079
GONG Y, LI Y K, CHEN X J, et al. Trophic niche and diversity of a pelagic squid (Dosidicus gigas): a comparative study using stable isotope, fatty acid, and feeding apparatuses morphology[J]. Front Mar Sci, 2020, 7: 00642. doi: 10.3389/fmars.2020.00642
QUSIPE-MACHACA M, GUZMAN-RIVAS F A, IBANEZ C M, et al. Trophodynamics of the jumbo squid Dosidicus gigas during winter in the Southeast Pacific Ocean off the coast of Chile: diet analyses and fatty acid profile[J]. Fishs Res, 2022, 245: 106154. doi: 10.1016/j.fishres.2021.106154
EVANS K, HINDELL M A. The diet of sperm whales (Physeter macrocephalus) in southern Australian waters[J]. ICES J Mar Sci, 2004, 61(8): 1313-1329. doi: 10.1016/j.icesjms.2004.07.026
SARAKINOS H C, JOHNSON M L, VANDER ZANDEN M J. A synthesis of tissue preservation effects on carbon and nitrogen stable isotope signatures[J]. Can J Zool, 2002, 80(02): 381-387. doi: 10.1139/z02-007
FEUCHTMAYR H, GREY J. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton[J]. Rapid Commun Mass Spectrom, 2003, 126(17): 2605-2610.
HETHERINGTON E D, KURLE C M, OHMAN M D, et al. Effects of chemical preservation on bulk and amino acid isotope ratios of zooplankton, fish, and squid tissues[J]. Rapid Commun Mass Spectrom, 2019, 33(10): 935-945. doi: 10.1002/rcm.8408
KAEHLER S, PAKHOMOV E A. Effects of storage and preservation on the delta C-13 and delta N-15 signatures of selected marine organisms[J]. Mar Ecol Prog Ser, 2001, 219: 299-304. doi: 10.3354/meps219299
CARABEL S, VERISIMO P, FREIRE J. Effects of preservatives on stable isotope analyses of four marine species[J]. Est Coast Shelf Sci, 2009, 82(2): 348-350. doi: 10.1016/j.ecss.2009.01.011
von ENDT D W. Spirit collections: a preliminary analysis of some organic materials found in the storage fluids of mammals[J]. Collection Forum, 1994, 10: 10-19.
BOURG B L, LEPOINT G, MICHEL L N. Effects of preservation methodology on stable isotope compositions of sea stars[J]. Rapid Commun Mass Spectrom, 2020, 34(2): e8589.
POST D M, LAYMAN C A, ARRINGTON D A, et al. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses[J]. Oceologica, 2007, 152: 179-189. doi: 10.1007/s00442-006-0630-x
SHEN Y F, DAVID M, GONG Y, et al. Effects of ethanol storage and lipid extraction on stable isotope compositions of twelve pelagic predators[J]. Front Mar Sci, 2023, 10: 1118013. doi: 10.3389/fmars.2023.1118013
HORII S, TAKAHASHI K, FURUYA K. Effects of ethanol-preservation on stable carbon and nitrogen isotopic signatures in marine predators[J]. Plankton Benthos Res, 2015, 10(2): 91-97. doi: 10.3800/pbr.10.91
MICHAEL D R, TED O, DAVID E. Effects of formalin preservation on invertebrate stable isotope values over decadal time scales[J]. Can J Zool, 2012, 90(11): 1320-1327. doi: 10.1139/z2012-101
UMBRICHT J, DIPPNER J W, FRY B, et al. Correction of the isotopic composition (δ13C and δ15N) of preserved Baltic and North Sea macrozoobenthos and their trophic interactions[J]. Mar Ecol Prog Ser, 2018, 595: 1-13. doi: 10.3354/meps12543
BICKNELL A W J, CAMPBELL M, KNIGHT M E, et al. Effects of formalin preservation on stable carbon and nitrogen isotope signatures in Calanoid copepods: implications for the use of Continuous Plankton Recorder Survey samples in stable isotope analyses[J]. Rapid Commun Mass Spectrom, 2011, 25(13): 1794-1800. doi: 10.1002/rcm.5049
BENNETT-WILLIAMS J, SKINNER C, WYATT A S J, et al. A multi-tissue, multi-species assessment of lipid and urea stable isotope biases in mesopredator elasmobranchs[J]. Front Mar Sci, 2022, 9: 821478. doi: 10.3389/fmars.2022.821478