• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 2095-0780

CN 44-1683/S

主管 农业部

主办 中国水产科学研究院南海水产研究所

响应面法优化水产品液体速冻用的载冷剂配比

2019. 响应面法优化水产品液体速冻用的载冷剂配比. 南方水产科学, 15(5): 99-108. doi: 10.12131/20190038
引用本文: 2019. 响应面法优化水产品液体速冻用的载冷剂配比. 南方水产科学, 15(5): 99-108. doi: 10.12131/20190038
Tao ZHANG, Yanyan WU, Laihao LI, Xianqing YANG, Wanling LIN, Shaoling YANG, Shuxian HAO. 2019. Optimization of ratio of refrigerants for quick liquid freezing of aquatic product by response surface methodology. South China Fisheries Science, 15(5): 99-108. doi: 10.12131/20190038
Citation: Tao ZHANG, Yanyan WU, Laihao LI, Xianqing YANG, Wanling LIN, Shaoling YANG, Shuxian HAO. 2019. Optimization of ratio of refrigerants for quick liquid freezing of aquatic product by response surface methodology. South China Fisheries Science, 15(5): 99-108. doi: 10.12131/20190038

响应面法优化水产品液体速冻用的载冷剂配比

  • 基金项目:

    现代农业产业技术体系建设专项资金(CARS-47);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助(2018ZD01);国家重点研发计划项目(2016YFF0202304)

详细信息
    作者简介:

    张 涛(1992—),男,硕士研究生,从事水产品加工与质量安全控制研究。E-mail: zhangtaolzt@163.com

    通讯作者: 吴燕燕(1969—),女,博士,研究员,从事水产品加工与质量安全控制研究。E-mail: wuyygd@163.com
  • 中图分类号: S 985;TS 254.4

Optimization of ratio of refrigerants for quick liquid freezing of aquatic product by response surface methodology

  • Fund Project: 现代农业产业技术体系建设专项资金(CARS-47);中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助(2018ZD01);国家重点研发计划项目(2016YFF0202304)
More Information
  • 为开发适合水产品快速冻结的安全食品级速冻液配方,该研究以乙醇、低聚果糖、柠檬酸、氯化钙、丙二醇等组成低温速冻液。通过单因素试验分析乙醇、低聚果糖、柠檬酸和氯化钙在不同质量分数下的冻结点变化规律,在此基础上以冻结点和黏度为响应值,通过Box-Behnken响应面法对速冻液中载冷剂的添加量进行优化,得到速冻液的最佳配方为19.9%乙醇、9.5%低聚果糖、3%柠檬酸、5%氯化钙、10%丙二醇。该配方制备的速冻液的冻结点可达−63.50 ℃、黏度4.64 mPa·s,具有冻结温度低、黏度小的特点,而且配方成本较低,操作方便,可应用于水产品及方便食品的快速冻结。
  • 加载中
  • 图 1  冻结液的冻结曲线图

    Figure 1.  Freezing curve of frozen liquid

    图 2  乙醇和丙二醇不同添加量溶液冻结点变化规律图

    Figure 2.  Variation rule of freezing point with different addition amounts of ethanol or propylene glycol

    图 3  乙醇添加到丙二醇中溶液冻结点变化

    Figure 3.  Variation of freezing point of solution of ethanol added to propylene glycol

    图 4  低聚果糖不同添加量溶液冻结点变化规律图

    Figure 4.  Variation rule of freezing point with different addition amounts of oligofructose

    图 5  柠檬酸不同添加量溶液冻结点变化规律图

    Figure 5.  Variation rule of freezing point with different addition amounts of citric acid

    图 6  氯化钙不同添加量溶液冻结点变化规律图

    Figure 6.  Variation rule of freezing point with different addition amounts of calcium chloride

    图 7  乙醇、柠檬酸、低聚果糖和氯化钙各因素交互作用对速冻液冻结点影响的响应面图

    Figure 7.  Response surface diagram of the interaction of ethanol, citric acid, oligofructose and calcium chloride on freezing point of quick freezing liquid

    图 8  乙醇、柠檬酸、低聚果糖和氯化钙各因素交互作用对速冻液黏度影响的响应面图

    Figure 8.  Response surface diagram of the interaction of ethanol, citric acid, oligofructose and calcium chloride on viscosity of frozen liquid

    表 1  载冷剂配比的响应面试验因素水平表

    Table 1.  Response surface factors level of refrigerants ratio

    因素factor水平 level
    –101
    乙醇质量分数/% (A) ethanol mass fraction101520
    低聚果糖质量分数/% (B) fructooligosaccharide content81012
    柠檬酸质量分数/% (C) mass fraction of citric acid/%345
    氯化钙质量分数/% (D) mass fraction of calcium chloride357
    下载: 导出CSV

    表 2  响应面法优化实验结果

    Table 2.  Experimental results of BOX-Behnken design

    序号serial No.ABCD冻结点绝对值/℃absolute value of freezing point黏度/mPa·sviscosity
    1 –1 –1 0 0 40.8 6.19
    2 1 –1 0 0 60.2 4.71
    3 –1 1 0 0 46.3 5.96
    4 1 1 0 0 47.9 5.66
    5 0 0 –1 –1 43.8 5.32
    6 0 0 1 –1 43.5 5.60
    7 0 0 –1 1 48.1 5.15
    8 0 0 1 1 44.3 7.80
    9 –1 0 0 –1 37.8 5.05
    10 1 0 0 –1 54.3 4.65
    11 –1 0 0 1 44.7 6.51
    12 1 0 0 1 56.5 5.58
    13 0 –1 –1 0 51.8 5.77
    14 0 1 –1 0 45.7 5.40
    15 0 –1 1 0 44.9 6.20
    16 0 1 1 0 42.1 7.14
    17 –1 0 –1 0 35.4 4.95
    18 1 0 –1 0 63.5 4.62
    19 –1 0 1 0 45.6 6.50
    20 1 0 1 0 40.8 5.35
    21 0 –1 0 –1 49.2 5.46
    22 0 1 0 –1 39.0 5.70
    23 0 –1 0 1 45.7 6.30
    24 0 1 0 1 49.5 6.62
    25 0 0 0 0 43.6 6.10
    26 0 0 0 0 44.6 5.90
    27 0 0 0 0 45.8 6.31
    28 0 0 0 0 45.3 6.00
    29 0 0 0 0 45.1 6.45
    下载: 导出CSV

    表 3  冻结点绝对值回归与方差分析结果

    Table 3.  Analysis of variance fitted regression model of absolute value of freezing point

    来源source平方和SS自由度df均方和MSFP显著性significance
    模型 model 1 042.95 14 74.5 37.67 < 0.000 1 **
    A 439.23 1 439.23 222.11 < 0.000 1 **
    B 40.7 1 40.7 20.58 0.000 5 **
    C 61.2 1 61.2 30.95 < 0.000 1 **
    D 37.45 1 37.45 18.94 0.000 7 **
    AB 79.21 1 79.21 40.05 < 0.000 1 **
    AC 270.6 1 270.6 136.84 < 0.000 1 **
    AD 5.52 1 5.52 2.79 0.116 9
    BC 2.72 1 2.72 1.38 0.260 2
    BD 49 1 49 24.78 0.000 2 **
    CD 3.06 1 3.06 1.55 0.233 8
    A2 42.51 1 42.51 21.5 0.000 4 **
    B2 9.69 1 9.69 4.9 0.043 9 *
    C2 1.48 1 1.48 0.75 0.401 7
    D2 0.96 1 0.96 0.49 0.497
    残差 residual 27.69 14 1.98
    失拟 lack of fit 24.9 10 2.49 3.57 0.115 7
    纯误差 pure error 2.79 4 0.7
    总和 cor total 1 070.64 28 0.974 1
    注:*. 差异显著(P<0.05);**. 差异极显著(P<0.01);下表同此 Note: *. significant difference (P<0.05); **. very significant difference (P<0.01). The same case in the following table.
    下载: 导出CSV

    表 4  黏度回归与方差分析结果

    Table 4.  Analysis of variance fitted regression model of viscosity

    来源source平方和SS自由度df均方和MS FP显著性significance
    模型 model 14.86 14 1.06 34.76 < 0.000 1 **
    A 1.76 1 1.76 57.47 < 0.000 1 **
    B 0.29 1 0.29 9.34 0.008 6 **
    C 4.54 1 4.54 148.58 < 0.000 1 **
    D 3.18 1 3.18 104.19 < 0.000 1 **
    AB 0.35 1 0.35 11.4 0.004 5 **
    AC 0.17 1 0.17 5.5 0.034 2 *
    AD 0.07 1 0.07 2.3 0.151 7
    BC 0.43 1 0.43 14.04 0.002 2 **
    BD 1.60E-03 1 1.60E-03 0.052 0.822 3
    CD 1.4 1 1.4 45.97 < 0.000 1 **
    A2 2.47 1 2.47 81.01 < 0.000 1 **
    B2 0.02 1 0.02 0.64 0.437 6
    C2 0.077 1 0.077 2.52 0.134 8
    D2 0.088 1 0.088 2.88 0.111 9
    残差 residual 0.43 14 0.031
    失拟 lack of fit 0.22 10 0.022 0.44 0.865 3
    纯误差 pure error 0.2 4 0.051
    总和 cor total 15.29 28
    下载: 导出CSV
  • LI D M, ZHU Z W, SUN D W. Effects of freezing on cell structure of fresh cellular food materials: a review[J]. Trends Food Sci Tech, 2018, 75: 46-55. doi: 10.1016/j.jpgs.2018.02.019

    LEYGONIE C, BRITZ T J, HOFFMAN L C. Impact of freezing and thawing on the quality of meat: review[J]. Meat Sci, 2012, 91(2): 93-98. doi: 10.1016/j.meatsci.2012.01.013

    LUCAS T, FAVIER C, CHOUROT J M, et al. Immersion chilling and freezing of a porous medium[J]. Int J Food Sci Tech, 2010, 35(6): 583-598.

    VERBOVEN P, SCHEERLINCK N, NICOLAI B M. Surface heat transfer coefficients to stationary spherical particles in an experimental unit for hydrofluidisation freezing of individual foods[J]. Int J Refrig, 2003, 26(3): 328-336. doi: 10.1016/S0140-7007(02)00110-X

    PERALTA J M, RUBIOLO A C, ZORRILLA S E. Design and construction of a hydrofluidization system. Study of the heat transfer on a stationary sphere[J]. J Food Eng, 2009, 90(3): 358-364. doi: 10.1016/j.jfoodeng.2008.07.004

    LUCAS T, FRANCOIS J, BOHUON P, et al. Factors influencing mass transfer during immersion cold storage of apples in NaCl/sucrose solutions[J]. LWT-Food Sci Tech, 2011, 32(6): 327-332.

    ISHIGURO H, HORIMIZU T. Three-dimensional microscopic freezing and thawing behavior of biological tissues revealed by real-time imaging using confocal laser scanning microscopy[J]. Int J Heat Mass Trans, 2008, 51(23/24): 5642-5649.

    TSIRONI T, DERMESONLOUOGLOU E, GIANNAKOUROU M, et al. Shelf life modelling of frozen shrimp at variable temperature conditions[J]. LWT-Food Sci Tech, 2009, 42(2): 664-671. doi: 10.1016/j.lwt.2008.07.010

    LUCAS T, CHOUROT J M, BOHUON P, et al. Freezing of a porous medium in contact with a concentrated aqueous freezant: numerical modelling of coupled heat and mass transport[J]. Int J Heat Mass Trans, 2001, 44(11): 2093-2106. doi: 10.1016/S0017-9310(00)00238-6

    GALETTO C D, VERDINI R A, ZORRILLA S E. Freezing of strawberries by immersion in CaCl2 solutions[J]. Food Chem, 2010, 123(2): 243-248. doi: 10.1016/j.foodchem.2010.04.018

(8)

(4)

计量
  • 文章访问数:  999
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2019-02-22
修回日期:  2019-04-22
刊出日期:  2019-10-05

目录