Optimization of ratio of refrigerants for quick liquid freezing of aquatic product by response surface methodology
-
摘要: 为开发适合水产品快速冻结的安全食品级速冻液配方,该研究以乙醇、低聚果糖、柠檬酸、氯化钙、丙二醇等组成低温速冻液。通过单因素试验分析乙醇、低聚果糖、柠檬酸和氯化钙在不同质量分数下的冻结点变化规律,在此基础上以冻结点和黏度为响应值,通过Box-Behnken响应面法对速冻液中载冷剂的添加量进行优化,得到速冻液的最佳配方为19.9%乙醇、9.5%低聚果糖、3%柠檬酸、5%氯化钙、10%丙二醇。该配方制备的速冻液的冻结点可达−63.50 ℃、黏度4.64 mPa·s,具有冻结温度低、黏度小的特点,而且配方成本较低,操作方便,可应用于水产品及方便食品的快速冻结。Abstract: In order to develop a safe food-grade quick-freezing liquid formulation suitable for rapid freezing of aquatic products, we designed a low-temperature quick freezing liquid which composed of ethanol, oligofructose, citric acid, calcium chloride and propylene glycol. Then, we analyzed the variation of freezing point with different mass fractions of that composition by single factor test. Based on that, taking the freezing point and viscosity as response values, we optimized the addition amount of the refrigerants in the quick freezing liquid by Box-Behnken response surface method. The optimum formula of quick-freezing liquid was 19.9% ethanol, 9.5% fructooligosaccharide, 3% citric acid, 5% calcium chloride and 10% propylene glycol. The quick-freezing liquid prepared by the formula had a freezing point of –63.50 ℃ and a viscosity of 4.64 mPa·s, characterized by low freezing temperature, small viscosity, low formulation cost and convenient operation, suitable for rapid freezing of aquatic products and frozen convenience foods.
-
表 1 载冷剂配比的响应面试验因素水平表
Table 1. Response surface factors level of refrigerants ratio
因素factor 水平 level –1 0 1 乙醇质量分数/% (A) ethanol mass fraction 10 15 20 低聚果糖质量分数/% (B) fructooligosaccharide content 8 10 12 柠檬酸质量分数/% (C) mass fraction of citric acid/% 3 4 5 氯化钙质量分数/% (D) mass fraction of calcium chloride 3 5 7 表 2 响应面法优化实验结果
Table 2. Experimental results of BOX-Behnken design
序号serial No. A B C D 冻结点绝对值/℃absolute value of freezing point 黏度/mPa·sviscosity 1 –1 –1 0 0 40.8 6.19 2 1 –1 0 0 60.2 4.71 3 –1 1 0 0 46.3 5.96 4 1 1 0 0 47.9 5.66 5 0 0 –1 –1 43.8 5.32 6 0 0 1 –1 43.5 5.60 7 0 0 –1 1 48.1 5.15 8 0 0 1 1 44.3 7.80 9 –1 0 0 –1 37.8 5.05 10 1 0 0 –1 54.3 4.65 11 –1 0 0 1 44.7 6.51 12 1 0 0 1 56.5 5.58 13 0 –1 –1 0 51.8 5.77 14 0 1 –1 0 45.7 5.40 15 0 –1 1 0 44.9 6.20 16 0 1 1 0 42.1 7.14 17 –1 0 –1 0 35.4 4.95 18 1 0 –1 0 63.5 4.62 19 –1 0 1 0 45.6 6.50 20 1 0 1 0 40.8 5.35 21 0 –1 0 –1 49.2 5.46 22 0 1 0 –1 39.0 5.70 23 0 –1 0 1 45.7 6.30 24 0 1 0 1 49.5 6.62 25 0 0 0 0 43.6 6.10 26 0 0 0 0 44.6 5.90 27 0 0 0 0 45.8 6.31 28 0 0 0 0 45.3 6.00 29 0 0 0 0 45.1 6.45 表 3 冻结点绝对值回归与方差分析结果
Table 3. Analysis of variance fitted regression model of absolute value of freezing point
来源source 平方和SS 自由度df 均方和MS F P 显著性significance 模型 model 1 042.95 14 74.5 37.67 < 0.000 1 ** A 439.23 1 439.23 222.11 < 0.000 1 ** B 40.7 1 40.7 20.58 0.000 5 ** C 61.2 1 61.2 30.95 < 0.000 1 ** D 37.45 1 37.45 18.94 0.000 7 ** AB 79.21 1 79.21 40.05 < 0.000 1 ** AC 270.6 1 270.6 136.84 < 0.000 1 ** AD 5.52 1 5.52 2.79 0.116 9 BC 2.72 1 2.72 1.38 0.260 2 BD 49 1 49 24.78 0.000 2 ** CD 3.06 1 3.06 1.55 0.233 8 A2 42.51 1 42.51 21.5 0.000 4 ** B2 9.69 1 9.69 4.9 0.043 9 * C2 1.48 1 1.48 0.75 0.401 7 D2 0.96 1 0.96 0.49 0.497 残差 residual 27.69 14 1.98 失拟 lack of fit 24.9 10 2.49 3.57 0.115 7 纯误差 pure error 2.79 4 0.7 总和 cor total 1 070.64 28 0.974 1 注:*. 差异显著(P<0.05);**. 差异极显著(P<0.01);下表同此 Note: *. significant difference (P<0.05); **. very significant difference (P<0.01). The same case in the following table. 表 4 黏度回归与方差分析结果
Table 4. Analysis of variance fitted regression model of viscosity
来源source 平方和SS 自由度df 均方和MS F P 显著性significance 模型 model 14.86 14 1.06 34.76 < 0.000 1 ** A 1.76 1 1.76 57.47 < 0.000 1 ** B 0.29 1 0.29 9.34 0.008 6 ** C 4.54 1 4.54 148.58 < 0.000 1 ** D 3.18 1 3.18 104.19 < 0.000 1 ** AB 0.35 1 0.35 11.4 0.004 5 ** AC 0.17 1 0.17 5.5 0.034 2 * AD 0.07 1 0.07 2.3 0.151 7 BC 0.43 1 0.43 14.04 0.002 2 ** BD 1.60E-03 1 1.60E-03 0.052 0.822 3 CD 1.4 1 1.4 45.97 < 0.000 1 ** A2 2.47 1 2.47 81.01 < 0.000 1 ** B2 0.02 1 0.02 0.64 0.437 6 C2 0.077 1 0.077 2.52 0.134 8 D2 0.088 1 0.088 2.88 0.111 9 残差 residual 0.43 14 0.031 失拟 lack of fit 0.22 10 0.022 0.44 0.865 3 纯误差 pure error 0.2 4 0.051 总和 cor total 15.29 28 -
LI D M, ZHU Z W, SUN D W. Effects of freezing on cell structure of fresh cellular food materials: a review[J]. Trends Food Sci Tech, 2018, 75: 46-55. doi: 10.1016/j.jpgs.2018.02.019
LEYGONIE C, BRITZ T J, HOFFMAN L C. Impact of freezing and thawing on the quality of meat: review[J]. Meat Sci, 2012, 91(2): 93-98. doi: 10.1016/j.meatsci.2012.01.013
LUCAS T, FAVIER C, CHOUROT J M, et al. Immersion chilling and freezing of a porous medium[J]. Int J Food Sci Tech, 2010, 35(6): 583-598.
VERBOVEN P, SCHEERLINCK N, NICOLAI B M. Surface heat transfer coefficients to stationary spherical particles in an experimental unit for hydrofluidisation freezing of individual foods[J]. Int J Refrig, 2003, 26(3): 328-336. doi: 10.1016/S0140-7007(02)00110-X
PERALTA J M, RUBIOLO A C, ZORRILLA S E. Design and construction of a hydrofluidization system. Study of the heat transfer on a stationary sphere[J]. J Food Eng, 2009, 90(3): 358-364. doi: 10.1016/j.jfoodeng.2008.07.004
LUCAS T, FRANCOIS J, BOHUON P, et al. Factors influencing mass transfer during immersion cold storage of apples in NaCl/sucrose solutions[J]. LWT-Food Sci Tech, 2011, 32(6): 327-332.
ISHIGURO H, HORIMIZU T. Three-dimensional microscopic freezing and thawing behavior of biological tissues revealed by real-time imaging using confocal laser scanning microscopy[J]. Int J Heat Mass Trans, 2008, 51(23/24): 5642-5649.
TSIRONI T, DERMESONLOUOGLOU E, GIANNAKOUROU M, et al. Shelf life modelling of frozen shrimp at variable temperature conditions[J]. LWT-Food Sci Tech, 2009, 42(2): 664-671. doi: 10.1016/j.lwt.2008.07.010
LUCAS T, CHOUROT J M, BOHUON P, et al. Freezing of a porous medium in contact with a concentrated aqueous freezant: numerical modelling of coupled heat and mass transport[J]. Int J Heat Mass Trans, 2001, 44(11): 2093-2106. doi: 10.1016/S0017-9310(00)00238-6
GALETTO C D, VERDINI R A, ZORRILLA S E. Freezing of strawberries by immersion in CaCl2 solutions[J]. Food Chem, 2010, 123(2): 243-248. doi: 10.1016/j.foodchem.2010.04.018