• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1674-5566

主管 上海市教委

主办 上海海洋大学

融合通道剪枝与ByteTrack的轻量化金枪鱼渔获数量实时检测

刘雨青 李杰 宋利明 魏星 陈明 隋恒寿 李彬 李同

上一篇

下一篇

刘雨青, 李杰, 宋利明, 魏星, 陈明, 隋恒寿, 李彬, 李同. 2023. 融合通道剪枝与ByteTrack的轻量化金枪鱼渔获数量实时检测. 上海海洋大学学报, 32(5): 1080-1089. doi: 10.12024/jsou.20230604241
引用本文: 刘雨青, 李杰, 宋利明, 魏星, 陈明, 隋恒寿, 李彬, 李同. 2023. 融合通道剪枝与ByteTrack的轻量化金枪鱼渔获数量实时检测. 上海海洋大学学报, 32(5): 1080-1089. doi: 10.12024/jsou.20230604241
LIU Yuqing, LI Jie, SONG Liming, WEI Xing, CHEN Ming, SUI Hengshou, LI Bin, LI Tong. 2023. Tuna catch real-time detection by fusing channel pruning with ByteTrack lightweight network. Journal of shanghai ocean university, 32(5): 1080-1089. doi: 10.12024/jsou.20230604241
Citation: LIU Yuqing, LI Jie, SONG Liming, WEI Xing, CHEN Ming, SUI Hengshou, LI Bin, LI Tong. 2023. Tuna catch real-time detection by fusing channel pruning with ByteTrack lightweight network. Journal of shanghai ocean university, 32(5): 1080-1089. doi: 10.12024/jsou.20230604241

融合通道剪枝与ByteTrack的轻量化金枪鱼渔获数量实时检测

  • 基金项目:

    国家自然科学基金(32273185);中水集团远洋股份有限公司技术研发项目(D-8006-20-0180)

详细信息
    作者简介:

    刘雨青(1976-),女,博士,副教授,研究方向为自动控制技术和基于深度学习的图像识别技术。E-mail:yqliu@shou.edu.cn

    通讯作者: 宋利明, E-mail: lmsong@shou.edu.cn
  • 中图分类号: TP391.4

Tuna catch real-time detection by fusing channel pruning with ByteTrack lightweight network

  • Fund Project: 国家自然科学基金(32273185);中水集团远洋股份有限公司技术研发项目(D-8006-20-0180)
More Information
  • 自动准确收集渔业捕捞数据是电子观察员系统的重要组成部分,然而,由于工作环境的复杂性和跟踪的不稳定性,金枪鱼延绳钓渔获数量自动估计在实践部署中仍存在挑战。本研究设计了一个轻量级计数网络对渔船上的实时视频数据进行自动处理,实现对金枪鱼渔获物的实时跟踪和计数。本研究选择YOLOv5s作为基准网络,首先采用通道剪枝算法对YOLOv5s的主干网络进行修剪,结果表明,剪枝后的模型检测精度mAP0.5~0.95达到68.8%,CPU下检测速度为16.5帧/s(FPS),与原始模型相比,检测效果基本不变,模型的参数量、模型大小和计算量分别减少了67.2%、66.4%和42.5%,检测速度提高了33.1%。其次,利用ByteTrack算法实现了多目标的实时跟踪,优化了计数区域形状,解决了被跟踪金枪鱼身份(ID)跳变导致的计数偏差问题,10个视频的测试结果表明,该方法的平均计数准确率为80%,视频处理速度为50.7帧/s,满足工业级实时检测要求。综上,该模型具有轻量化、高精度、实时性等优点,可在复杂的工作环境下完成对延绳钓捕捞结果的实时监控,为实现渔业自动化提供思路。
  • 加载中
  • GOLDEN C D, ALLISON E H, CHEUNG W W L, et al. Nutrition: Fall in fish catch threatens human health[J]. Nature, 2016, 534(7607): 317-320.

    YANG X T, ZHANG S, LIU J T, et al. Deep learning for smart fish farming: applications, opportunities and challenges[J]. Reviews in Aquaculture, 2021, 13(1): 66-90.

    VAN HELMOND A T M, MORTENSEN L O, PLET-HANSEN K S, et al. Electronic monitoring in fisheries: lessons from global experiences and future opportunities[J]. Fish and Fisheries, 2020, 21(1): 162-189.

    BICKNELL A W, GODLEY B J, SHEEHAN E V, et al. Camera technology for monitoring marine biodiversity and human impact[J]. Frontiers in Ecology and the Environment, 2016, 14(8): 424-432.

    BROWN C J, DESBIENS A, CAMPBELL M D, et al. Electronic monitoring for improved accountability in western Pacific tuna longline fisheries[J]. Marine Policy, 2021, 132: 104664.

    PROBST W N. How emerging data technologies can increase trust and transparency in fisheries[J]. ICES Journal of Marine Science, 2020, 77(4): 1286-1294.

    LIU Y Q, CHU H Y, SONG L M, et al. An improved tuna-YOLO model based on YOLOv3 for real-time tuna detection considering lightweight deployment[J]. Journal of Marine Science and Engineering, 2023, 11(3): 542.

    CAI K W, MIAO X Y, WANG W, et al. A modified YOLOv3 model for fish detection based on MobileNetv1 as backbone[J]. Aquacultural Engineering, 2020, 91: 102117.

    IQBAL M A, WANG Z J, ALI Z A, et al. Automatic fish species classification using deep convolutional neural networks[J]. Wireless Personal Communications, 2021, 116(2): 1043-1053.

    BRADLEY D, MERRIFIELD M, MILLER K M, et al. Opportunities to improve fisheries management through innovative technology and advanced data systems[J]. Fish and Fisheries, 2019, 20(3): 564-583.

    TSENG C H, KUO Y F. Detecting and counting harvested fish and identifying fish types in electronic monitoring system videos using deep convolutional neural networks[J]. ICES Journal of Marine Science, 2020, 77(4): 1367-1378.

    ZHANG S, YANG X T, WANG Y Z, et al. Automatic fish population counting by machine vision and a hybrid deep neural network model[J]. Animals, 2020, 10(2): 364.

    MICHELINM, ELLIOTTM, BUCHERM, et al. Catalyzing the growth of electronic monitoring in fisheries[R]. California Environmental Associates, 2018.

    WANG D D, HE D J. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning[J]. Biosystems Engineering, 2021, 210: 271-281.

    JIANG P Y, ERGU D, LIU F Y, et al. A review of Yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.

    MAHASIN M, DEWI I A. Comparison of CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0 Backbones on YOLO V4 as Object Detector[J]. International Journal of Engineering, Science and Information Technology, 2022, 2(3): 64-72.

    ZHANGY F, SUNP Z, JIANGY, et al. ByteTrack: Multi-object tracking by associating every detection box[C]//17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022: 1-21.

    WELCH G, BISHOP G. An introduction to the Kalman filter[M]. Chapel Hill, NC, United States: University of North Carolina, 1995.

    KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2): 83-97.

计量
  • 文章访问数:  662
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2023-06-15
修回日期:  2023-08-07
刊出日期:  2023-09-20

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发