首页 >  上海海洋大学学报 >  不同振动模式对副溶血性弧菌生物被膜形成的影响

2020, 29(6): 950-960. doi: 10.12024/jsou.20190402619

不同振动模式对副溶血性弧菌生物被膜形成的影响

1. 上海海洋大学 食品学院, 上海 201306;

2. 农业农村部水产品贮藏保鲜质量安全风险评估实验室, 上海 201306;

3. 上海水产品加工及贮藏工程技术研究中心, 上海 201306;

4. 上海海洋大学 食品热加工工程技术研究中心, 上海 201306

通讯作者: 赵勇, yzhao@shou.edu.cn

收稿日期:2019-04-25
修回日期:2020-04-16

基金项目:   国家自然科学基金(31571917,31671779);上海市科技兴农项目(沪农科攻字2016第1-1号,沪农科推字2017第4-4号);上海市教委曙光计划(15SG48) 

关键词: 生物被膜 , 副溶血性弧菌 , 振动 , 结构

Effects of different vibration modes on Vibrio parahaemolyticus biofilm

1. College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China;

2. Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China;

3. Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China;

4. Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China

Corresponding author: ZHAO Yong, yzhao@shou.edu.cn

Received Date:2019-04-25
Accepted Date:2020-04-16

Keywords: biofilm , Vibrio parahemolyticus , vibration , architecture

为了探究食品工厂环境下更为真实的生物被膜形成过程,有效地预防和控制食品加工过程中副溶血性弧菌生物被膜的污染情况,通过模拟不同的食品加工器械振动模式(水平旋转式振动、翘板式振动、垂直翻转式振动),研究不同振动模式下副溶血性弧菌在玻璃和不锈钢表面培养72 h生物被膜的形成过程,分析不同振动模式对被膜生物量、被膜结构以及被膜胞外基质中胞外多糖和胞外蛋白的影响。结果发现:振动条件下副溶血性弧菌被膜形成量明显减少;3种振动模式下垂直翻转式振动条件下被膜生成量最少;同种振动方式下副溶血性弧菌在不锈钢表面形成量大于玻璃表面;增加水平旋转转速,被膜生成量减少;振动导致被膜总生物量减少,多孔性和均一性增加,生物被膜结构趋于简单,被膜比较分散。振动导致生物被膜胞外多糖和胞外蛋白含量减少。结果表明:不同的器械振动对被膜的影响不同,本研究模拟的3种振动模式中选择垂直翻转式振动模式可以有效地减少与抑制生物被膜的生长;振动会导致细菌生物被膜胞外多糖和蛋白的减少,影响被膜的孔径、均一性等结构特性,被膜结构变得松散,被膜生成量减少。

Vibrio parahaemolyticus biofilm formation in the food factory environment was studied, in order to prevent and control the biofilm pollution effectively. The different vibration modes of food processing equipment (such as horizontal rotary vibration, bevel vibration and vertical rotary vibration) were simulated to investigate Vibrio parahaemolyticus formation process on the surfaces of glass and stainless steel for 72 h, and the effect of vibration on the biomass, architecture and extracellular polymeric substances of biofilm was analyzed. The results showed that:the biofilm formation under shaking cultivation decreased significantly; the biomass of biofilm was the least under vertical rotary vibration; the biomass of biofilm on the stainless steel surface is greater than that on glass surface under same shaking cultivation; the biofilm formation was reduced with the increasing of horizontal rotation speed; the vibration caused the biovolume decreased, and the porosity and homogeneity increased, the architecture of biofilm dispersed; and the amount of extracellular polysaccharides and extracellular proteins of the biofilm decreased. All results show that different vibration modes have different effects on the biofilm; the selection of the vertical rotary vibration mode out of the three vibration modes can reduce and inhibit the growth of the biofilm effectively; the vibration cause the reduction of exopolysaccharide and protein, affecting the structural characteristics such as porosity and homogeneity; and the structure and formation of biofilm becomes simple and decrease.

参考文献

[1] BOONYAWANTANG A, MAHAKARNCHANAKUL W, RACH-TANAPUN C, et al. Behavior of pathogenic Vibrio parahaemolyticus in prawn in response to temperature in laboratory and factory[J]. Food Control, 2012, 26(2):479-485.
[2] RASZL S M, FROELICH B A, VIEIRA C R W, et al. Vibrio parahaemolyticus and Vibrio vulnificus in South America:water, seafood and human infections[J]. Journal of Applied Microbiology, 2016, 121(5):1201-1222.
[3] BROBERG C A, CALDER T J, ORTH K. Vibrio parahaemolyticus cell biology and pathogenicity determinants[J]. Microbes and Infection, 2011, 13(12/13):992-1001.
[4] JAMAL M, AHMAD W, ANDLEEB S, et al. Bacterial biofilm and associated infections[J]. Journal of the Chinese Medical Association, 2018, 81(1):7-11.
[5] LIU Y, TAY J H. Detachment forces and their influence on the structure and metabolic behaviour of biofilms[J]. World Journal of Microbiology and Biotechnology, 2001, 17(2):111-117.
[6] 陈小雪, 陈晶瑜, 韩北忠. 食品加工过程中细菌生物被膜的危害及控制[J]. 中国酿造, 2016, 35(1):1-4. CHEN X X, CHEN J Y, HAN B Z. Hazard and control of bacterial biofilm during the food processing[J]. China Brewing, 2016, 35(1):1-4.
[7] DEGUCHI S, SHIMOSHIGE H, TSUDOME M, et al. Microbial growth at hyperaccelerations up to 403, 627×g[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19):7997-8002.
[8] PETERSON B W, HE Y, REN Y J, et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges[J]. FEMS Microbiology Reviews, 2015, 39(2):234-245.
[9] BILLINGS N, BIRJINIUK A, SAMAD T S, et al. Material properties of biofilms-a review of methods for understanding permeability and mechanics[J]. Reports on Progress in Physics, 2015, 78(3):036601.
[10] FABBRI S, LI J, HOWLIN R P, et al. Fluid-driven interfacial instabilities and turbulence in bacterial biofilms[J]. Environmental Microbiology, 2017, 19(11):4417-4431.
[11] SONG X Y, MA Y J, FU J J, et al. Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation[J]. Food Control, 2017, 73:485-491.
[12] ANTONIANI D, BOCCI P, MACIAG A, et al. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors[J]. Applied Microbiology and Biotechnology, 2010, 85(4):1095-1104.
[13] DOREL C, VIDAL O, PRIGENT-COMBARET C, et al. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation[J]. FEMS Microbiology Letters, 1999, 178(1):169-175.
[14] JIN H, ZHOU R, KANG M S, et al. Biofilm formation by field isolates and reference strains of Haemophilus parasuis[J]. Veterinary Microbiology, 2006, 118(1/2):117-123.
[15] O'TOOLE G A, KOLTER R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways:a genetic analysis[J]. Molecular Microbiology, 1998, 28(3):449-461.
[16] KIM H S, PARK H D. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14[J]. PLoS One, 2013, 8(9):e76106.
[17] NAKAMURA H, TAKAKURA K I, SONE Y, et al. Biofilm formation and resistance to benzalkonium chloride in Listeria monocytogenes isolated from a fish processing plant[J]. Journal of Food Protection, 2013, 76(7):1179-1186.
[18] 刘露露, 徐溢, 王人杰, 等. 生物被膜的形成及其电化学阻抗检测[J]. 生物工程学报, 2018, 34(3):320-333. LIU L L, XU Y, WANG R J, et al. Detection of biofilms formation by electrochemical impedance spectroscopy[J]. Chinese Journal of Biotechnology, 2018, 34(3):320-333.
[19] 柴旭锋, 齐家伟, 赵莉, 等. 副溶血弧菌在鱼鳞表面形成生物被膜的动态过程及酸性电解水对其清除效果[J]. 上海海洋大学学报, 2019, 28(5):792-800. CHAI X F, QI J W, ZHAO L, et al. Eradication effect of acidic electrolyzed water on Vibrio parahemolyticus biofilm formed on fish scale surface[J]. Journal of Shanghai Ocean University, 2019, 28(5):792-800.
[20] 甘田生, 龚湘君. 生物被膜的物理特性及其表征[J]. 生物工程学报, 2017, 33(9):1390-1398. GAN T S, GONG X J. Characterization of the physical properties of biofilms[J]. Chinese Journal of Biotechnology, 2017, 33(9):1390-1398.
[21] CARPENTIER B, CERF O. Biofilms and their consequences,with particular reference to hygiene in the food industry[J]. Journal of Applied Bacteriology, 1993, 75(6):499-511.
[22] DUNNE W M JR. Bacterial adhesion:seen any good biofilms lately?[J]. Clinical Microbiology Reviews, 2002, 15(2):155-166.
[23] 赵爱静, 付娇娇, 宋雪迎, 等. 致病性与非致病性副溶血性弧菌在不同温度和接触材料表面生物被膜形成情况分析[J]. 食品与生物技术学报, 2018, 37(1):7-14. ZHAO A J, FU J J, SONG X Y, et al. Analysis of biofilm formation by pathogenic and no-pathogenic Vibrio parahaemolyticus at various temperatures and contact surfaces[J]. Journal of Food Science and Biotechnology, 2018, 37(1):7-14.
[24] 石文琪, 张会彦, 胡泽阳, 等. 金黄色葡萄球菌在静置和振荡培养条件下的生物被膜构造[J]. 中国食品学报, 2018, 18(4):37-44. SHI W Q, ZHANG H Y, HU Z Y, et al. Biofilm architecture of Staphylococcus aureus during static and shaking cultivation[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(4):37-44.
[25] SCHMIDT J C, ASTASOV-FRAUENHOFFER M, WALTIMO T, et al. Efficacy of various side-to-side toothbrushes and impact of brushing parameters on noncontact biofilm removal in an interdental space model[J]. Clinical Oral Investigations, 2017, 21(5):1565-1577.
[26] 朱秀菊, 王嫣, 余加林, 等. 高强度聚焦超声对体外铜绿假单胞菌生物被膜的杀菌作用及其空间结构的影响[J]. 中国超声医学杂志, 2011, 27(2):97-101. ZHU X J, WANG Y, YU J L, et al. Effects of high-intensity focused ultrasound on bactericidal action and structure of Pseudomonas aeruginosa biofilm in vitro[J]. Chinese Journal of Ultrasound in Medicine, 2011, 27(2):97-101.
[27] OBERHOLZER C, OBERHOLZER A, CLARE-SALZLER M, et al. Apoptosis in sepsis:a new target for therapeutic exploration[J]. The FASEB Journal, 2001, 15(6):879-892.
[28] SEREBRYANNYY L, PARILLA M, ANNIBALE P, et al. Nuclear actin dynamics regulate nuclear organization and transcription[J]. Biophysical Journal, 2015, 108(2):536a.
[29] SATPUTE S K, BANAT I M, DHAKEPHALKAR P K, et al. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms[J]. Biotechnology Advances, 2010, 28(4):436-450.
[30] DWORKIN M, FALKOW S, ROSENBERG E, et al. The prokaryotes:volume 1:symbiotic associations, biotechnology, applied microbiology[M]. 3rd ed. New York:Springer, 2006.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

不同振动模式对副溶血性弧菌生物被膜形成的影响