首页 >  上海海洋大学学报 >  基于DNA条形码的如东海域浒苔附着鱼卵的物种鉴定

2018, 27(1): 1-7. doi: 10.12024/jsou.20170301981

基于DNA条形码的如东海域浒苔附着鱼卵的物种鉴定

1. 海洋动物系统分类与进化上海高校重点实验室, 上海 201306;

2. 上海洋大学 水产种质资源发掘与利用教育部重点实验室, 上海 201306;

3. 上海海洋大学 水产科学国家级实验教学示范中心, 上海 201306

通讯作者: 杨金权, jqyang@shou.edu.cn

收稿日期:2017-03-15
修回日期:2017-10-11

基金项目:   国家自然科学基金(31172066) 

关键词: DNA条形码 , 沙氏下鱵鱼 , 浒苔 , 物种鉴定

Molecular identification of fish eggs in Enteromorpha of Rudong sea area based on DNA barcode

1. Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China;

2. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;

3. National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China

Corresponding author: YANG Jinquan, jqyang@shou.edu.cn

Received Date:2017-03-15
Accepted Date:2017-10-11

Keywords: DNA barcode , Hyporhamphus sajori , Enteromorpha , species identification

为了探明如东海域浒苔藻团中附着的大量鱼卵的产卵鱼种,利用DNA条形码技术对其进行了物种鉴定。鉴定结果表明:鱼卵、仔鱼、成鱼与沙氏下鱵鱼(Hyporhamphus sajori)COI基因片段序列之间无变异位点出现,遗传距离为0,而与其他颌针鱼目鱼类序列间差异达10.83%~20.94%,遗传距离在21.9%~26.4%之间;NJ分子系统发育分析显示鱼卵、仔鱼、成鱼与沙氏下鱵鱼聚为单系群。因此,确定该海域浒苔藻团中产卵鱼类为沙氏下鱵鱼。在此基础上探讨了浒苔藻团附着大量黏性鱼卵现象的原因及其对近海鱼类资源恢复的启示。

To identify the fish eggs which were obtained from Enteromorpha algae of Rudong sea area, DNA barcoding technique was used. Our result showed there were no variable sites in mtDNA COI gene sequences among our fish eggs, larvae, adults and Japanese halfbeak (Hyporhamphus sajori), and the genetic distance among them was 0. However, there are high variable sites among the eggs, larvae, adults and the other Beloniformes fishes, and the genetic distance among them is 21.9%-26.4%. The Neighbor-joining (NJ) phylogenetic tree also indicated that the eggs, larvae, adults and the Japanese halfbeak formed a monophyletic group. Therefore, it is suggested that the fish eggs which we obtained from Enteromorpha algae of Rudong sea area were Hyporhamphus sajori. Based on our identification result, we further discussed the reasons of Japanese halfbeak spawning in algae and how to use this phenomenon to recover the offshore fish resources.

参考文献

[1] WU Z X. The eutrophication characteristics of typical Chinese coastal areas and applications of an integrated methodology for eutrophication assessment in these areas[D]. Qingdao:Graduate University of Chinese Academy of Sciences (Institute of Oceanology), 2013.
[2] 吴在兴. 我国典型海域富营养化特征、评价方法及其应用[D]. 青岛:中国科学院研究生院(海洋研究所), 2013.
[3] 厉丞烜, 张朝晖, 陈力群, 等. 我国海洋生态环境状况综合分析[J]. 海洋开发与管理, 2014, 31(3):87-95.
[4] LI C H, ZHANG C H, CHEN L Q, et al. A comprehensive analysis of the marine ecological environment in China[J]. Ocean Development and Management, 2014, 31(3):87-95.
[5] WU Q, ZHANG J H, ZHAO S, et al. An adjustment mechanism to high light intensity for free-floating Ulva in the Yellow Sea[J]. Journal of Shanghai Ocean University, 2016, 25(1):97-105.
[6] 吴青, 张建恒, 赵升, 等. 黄海绿潮漂浮浒苔对高光强胁迫生态适应机制研究[J]. 上海海洋大学学报, 2016, 25(1):97-105.
[7] ZHANG L H, ZHANG J H, ZHAO S, et al. Physiological characteristics of the floating Ulva macroaglae along Qingdao coast in 2014[J]. Journal of Shanghai Ocean University, 2016, 25(4):591-598.
[8] 张林慧, 张建恒, 赵升, 等. 2014年青岛海域消亡漂浮浒苔生理特征研究[J]. 上海海洋大学学报, 2016, 25(4):591-598.
[9] CHENG F J. Historical sedimentary records in typical stations in Changjiang (Yangtze) River estuary and its adjacent East China Sea and their indications of eutrophication[D]. Qingdao:Graduate University of Chinese Academy of Sciences (Institute of Oceanology), 2012.
[10] 程芳晋. 长江口邻近海域典型站位的沉积记录及其对富营养化演变的指示意义[D]. 青岛:中国科学院研究生院(海洋研究所), 2012.
[11] 王大海. 海水养殖业发展规模经济及规模效率研究[D]. 青岛:中国海洋大学, 2014.
[12] WANG D H. A study on the problems and countermeasures of scale economy of marine aquaculture in China[D]. Qingdao:Ocean University of China, 2014.
[13] 刘青. 黄海绿潮浒苔与浮游植物间的相互作用研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2015.
[14] LIU Q. The interactions study between bloom-forming Ulva prolifera and phytoplankton in the Yellow Sea[D]. Qingdao:Graduate University of Chinese Academy of Sciences (Institute of Oceanology), 2015.
[15] TANG Q S, ZHANG X W, YE N H, et al. Review on the research progress on marine green tide[J]. Bulletin of National Natural Science Foundation of China, 2010(1):5-9.
[16] 唐启升, 张晓雯, 叶乃好, 等. 绿潮研究现状与问题[J]. 中国科学基金, 2010(1):5-9.
[17] 刘峰, 逄少军. 黄海浒苔绿潮及其溯源研究进展[J]. 海洋科学进展, 2012, 30(3):441-449.
[18] LIU F, PANG S J. Research advances on green tides in the Yellow Sea[J]. Advances in Marine Science, 2012, 30(3):441-449.
[19] 丁月旻. 黄海浒苔绿潮中生源要素的迁移转化及对生态环境的影响[D]. 青岛:中国科学院研究生院(海洋研究所), 2014.
[20] DING Y M. Impacts of Ulva (Enteromorpha) prolifera in the green tide on the Yellow Sea ecological environment-implications from migration and transformation of biogenic elements[D]. Qingdao:Graduate University of Chinese Academy of Sciences (Institute of Oceanology), 2014.
[21] 田晓玲, 霍元子, 陈丽平, 等. 江苏如东近海绿潮藻分子检测与类群演替分析[J]. 科学通报, 2011, 56(4/5):309-317.
[22] TIAN X L, HUO Y Z, CHEN L P, et al. Molecular detection and analysis of green seaweeds from Rudong coasts in Jiangsu Province[J]. Chinese Science Bulletin, 2011, 56(4/5):309-317.
[23] 张建恒, 陈丽平, 霍元子, 等. 我国江苏如东岸基绿潮藻分布特征[J]. 海洋环境科学, 2013, 32(1):1-5.
[24] ZHANG J H, CHEN L P, HUO Y Z, et al. Distributing characteristics of green tide algae growing on settled sediment in Rudong coastal area[J]. Marine Environmental Science, 2013, 32(1):1-5.
[25] WARD R D, ZEMLAK T S, INNES B H, et al. DNA barcoding Australia's fish species[J]. Philosophical Transactions of the Royal Society of B:Biological Sciences, 2005, 360(1462):1847-1857.
[26] LIU S F, CHEN L L, DAI F Q, et al. Applicaction of DNA barcoding gene COI for classifying family Sciaenidae[J]. Oceanologia et Limnologia Sinica, 2010, 41(2):223-232.
[27] WITT J D S, THRELOFF D L, HEBERT P D N. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus:implications for desert spring conservation[J]. Molecular Ecology, 2006, 15(10):3073-3082.
[28] XING B P, LIN R R, WANG Y G, et al. Species identification for fishes in Xiamen sea waters based on COI barcoding[J]. Journal of Applied Oceanography, 2016, 35(1):144-150.
[29] ZHANG X Y, LIU Y, ZHANG X M, et al. Species identification of some commercial fishes in southwest Atlantic based on COI barcoding[J]. Acta Hydrobiologica Sinica, 2014, 38(6):1161-1167.
[30] 柳淑芳, 陈亮亮, 戴芳群, 等. 基于线粒体COI基因的DNA条形码在石首鱼科(Sciaenidae)鱼类系统分类中的应用[J]. 海洋与湖沼, 2010, 41(2):223-232.
[31] ZHU Y. Studies on the methods of removing attached Ulva. L green algae from Pyropia rafts[D]. Shanghai:Shanghai Ocean University, 2014.
[32] KUMAR S, TAMURA K, NEI M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Briefings in Bioinformatics, 2004, 5(2):150-163.
[33] HAN H B, HUA L, HUO Y Z, et al. The distribution features of Ulva microscopic propagules in Jiangsu Porphyra aquaculture regions before the outbreak of the green tides in Yellow Sea[J]. Journal of Shanghai Ocean University, 2015, 24(3):365-374.
[34] 邢炳鹏, 林汝榕, 王彦国, 等. 基于COI基因的厦门海域鱼类DNA条形码鉴定[J]. 应用海洋学学报, 2016, 35(1):144-150.
[35] 张馨月, 刘岩, 张秀梅, 等. 基于COI基因的西南大西洋部分经济鱼类DNA条形码鉴定[J]. 水生生物学报, 2014, 38(6):1161-1167.
[36] BIAN X D, ZHANG X M, GAO T X, et al. Morphological and genetic identification of Japanese halfbeak (Hyporhamphus sajori) eggs[J]. Journal of Fisheries of China, 2008, 32(3):342-352.
[37] LI L L, TANG X M, GAO G, et al. Influence of submerged vegetation restoration on bacterial diversity and community composition in West Lake[J]. Journal of Lake Science, 2013, 25(2):188-198.
[38] MOIR H J, SOULSBY C, YOUNGSON A. Hydraulic and sedimentary characteristics of habitat utilized by Atlantic salmon for spawning in the Girnock Burn, Scotland[J]. Fisheries Management and Ecology, 1998,5(3):241-254.
[39] CROWDER D W, DIPLAS P. Vorticity and circulation:spatial metrics for evaluating flow complexity in stream habitats[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(4):633-645.
[40] REN W J, TIAN Z F, NING G H, et al. Purification efficiency of four species submerged macrophytes for the eutrophic water in Baiyangdian Lake[J]. Ecology and Environmental Sciences, 2011, 20(2):345-352.
[41] YAO J. Study on the relationships among tilapia, periphyton and submerged macrophyte Vallisneria spiralis[D]. Guangzhou:Jinan University, 2010.
[42] CROWDER D W, DIPLAS P. Evaluating spatially explicit metrics of stream energy gradients using hydrodynamic model simulations[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(7):1497-1507.
[43] 朱莹. 紫菜养殖筏架固着绿藻的清除方法研究[D]. 上海:上海海洋大学, 2014.
[44] MA W H. The feeding ecology of snails on benthic algae[D]. Shanghai:Shanghai Ocean University, 2014.
[45] 韩红宾, 华梁, 霍元子, 等. 黄海绿潮暴发前江苏紫菜养殖海域绿藻显微繁殖体分布特征[J]. 上海海洋大学学报, 2015, 24(3):365-374.
[46] LIU Y C. Relationship among tilapia, periphyton and submerged macrophyte:a review[J]. Ecology and Environmental Sciences, 2010, 19(10):2511-2514.
[47] YOKONO M, TAKABAYASHI A, AKIMOTO S, et al. A megacomplex composed of both photosystem reaction centres in higher plants[J]. Nature Communications, 2015, 6:6675.
[48] WANG H, LIN A P, GU W H, et al. The sporulation of the green alga Ulva proliferais controlled by changes in photosynthetic electron transport chain[J]. Scientific Reports, 2016, 6:24923.
[49] YAMORI W, SHIKANAI T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth[J]. Annual Review of Plant Biology, 2016, 67:81-106.
[50] 卞晓东, 张秀梅, 高天翔, 等. 沙氏下鱵鱼卵的形态学及遗传学鉴别研究[J]. 水产学报, 2008, 32(3):342-352.
[51] 李琳琳, 汤祥明, 高光, 等. 沉水植物生态修复对西湖细菌多样性及群落结构的影响[J]. 湖泊科学, 2013, 25(2):188-198.
[52] 任文君, 田在锋, 宁国辉, 等. 4种沉水植物对白洋淀富营养化水体净化效果的研究[J]. 生态环境学报, 2011, 20(2):345-352.
[53] 姚洁. 罗非鱼、附着藻类与沉水植物苦草关系的研究[D]. 广州:暨南大学, 2010.
[54] 马文华. 螺类对附着藻类的摄食生态研究[D]. 上海:上海海洋大学, 2014.
[55] 刘玉超. 罗非鱼-附着藻-沉水植物相互关系研究进展[J]. 生态环境学报, 2010, 19(10):2511-2514.

相关文章

[1] 陈晶, 聂青, 刘妍. 《WHO基本药物示范目录》与我国《国家基本药物目录》动态调整程序比较与借鉴.水产学报,2015(3): 289-293.doi:10.3866/PKU.WHXB201503022
  • 导出引用
  • 下载XML
  • 收藏文章
计量
  • 文章下载量()
  • 文章访问量()

目录

基于DNA条形码的如东海域浒苔附着鱼卵的物种鉴定