• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-0615

主管 中国科学技术协会

主办 中国水产学会

海洋捕捞技术、渔具渔法研究进展与趋势

王鲁民 王忠秋

上一篇

下一篇

王鲁民, 王忠秋. 2023. 海洋捕捞技术、渔具渔法研究进展与趋势. 水产学报, 47(11): 119716. doi: 10.11964/jfc.20231014196
引用本文: 王鲁民, 王忠秋. 2023. 海洋捕捞技术、渔具渔法研究进展与趋势. 水产学报, 47(11): 119716. doi: 10.11964/jfc.20231014196
Lumin WANG, Zhongqiu WANG. 2023. Review of marine fishing equipment and technology. Journal of Fisheries of China, 47(11): 119716. doi: 10.11964/jfc.20231014196
Citation: Lumin WANG, Zhongqiu WANG. 2023. Review of marine fishing equipment and technology. Journal of Fisheries of China, 47(11): 119716. doi: 10.11964/jfc.20231014196

海洋捕捞技术、渔具渔法研究进展与趋势

  • 基金项目:

    青岛海洋科技中心专项 (2022QNLM030002-2);上海市科学技术委员会青年科技英才扬帆计划 (23YF1459700)

详细信息
    作者简介:

    王鲁民(照片),从事渔业捕捞技术研究,E-mail:lmwang@ecsf.ac.cn

    通讯作者: 王忠秋,从事渔具渔法研究,E-mail:wangzq@ecsf.ac.cn
  • 中图分类号: S 973

Review of marine fishing equipment and technology

  • Fund Project: 青岛海洋科技中心专项 (2022QNLM030002-2);上海市科学技术委员会青年科技英才扬帆计划 (23YF1459700)
More Information
  • 综合应用船舶、机械、信息、新材料等技术,从海洋中捕捞经济渔获物并综合利用,是现代海洋捕捞业的主要特征。海洋捕捞技术的发展和创新,对保障我国食物安全、保护近海生态与资源、实现渔民增收和新渔村建设、推动渔业产业结构调整和转型、维护我国海洋权益等方面具有非常重要的作用。本文通过简析海洋捕捞渔场探测、渔具渔法与高效自动化辅渔助渔技术等方面的研究进展,提出海洋捕捞技术的重点发展方向,以期为我国海洋捕捞实现节能高效、生态友好和资源可持续利用,海洋捕捞技术升级和产业高质量发展提供参考。
  • 加载中
  • FAO. The state of world fisheries and aquaculture 2022[R]. Rome: FAO, 2022.

    Li H Y, Jiang X D, Wang Y, et al. Analysis on development trend of marine fishery in China based on grey prediction model[J]. Fishery Information & Strategy, 2021, 36(2): 88-95 (in Chinese).

    Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. 2023 China fishery statistical yearbook[M]. Beijing: China Agriculture Press, 2023 (in Chinese).

    Li D H, Han L M. Research on building a new system of food security guarantee through land and sea coordination[J]. Social Science Journal, 2019(6): 109-117 (in Chinese).

    Zhai L, Sun Z Q, Wang B, et al. Study on development of China’s marine fisheries based on GM (1, 1) model[J]. Jiangsu Agricultural Sciences, 2019, 47(13): 342-346 (in Chinese).

    Ding Y N, Gao X L. The Industrial structure and investment trends of global marine fisheries[J]. Ocean Development and Management, 2016, 33(9): 59-64 (in Chinese).

    Liu Y, Pei Z B, Jiang Y Y. The construction of ‘Blue Granary’ in new normal[J]. Ocean Development and Management, 2017, 34(12): 3-8 (in Chinese).

    Liu Z F, Sun H W, Yue D D, et al. Research on China's maintance policy for marie capture fishery resources in the new era[J]. Journal of Agricultural Science and Technology, 2018, 20(12): 1-8 (in Chinese).

    Long J X, Chen J Y, Xu H X, et al. Strategic thinking on sustainability of inshore fishery resources in China based on the concept of green development[J]. Ocean Development and Management, 2021, 38(11): 11-17 (in Chinese). doi: 10.3969/j.issn.1005-9857.2021.11.002

    Zhang L T, Wang B, Qin H. On the construction of development mode of Blue Granary in China[J]. Journal of Shandong University (Philosophy and Social Sciences), 2018(5): 36-44 (in Chinese).

    Li H, Han L M. Characteristics and policy support of distant fishery[J]. Chinese Fisheries Economics, 2015, 33(6): 68-73 (in Chinese).

    Liu Y X, Chen C, Lin X H. Current situation and enlightenment of exploitation and utilization of Antarctic fishery resources[J]. Chinese Fisheries Economics, 2023, 41(2): 117-126 (in Chinese). doi: 10.3969/j.issn.1009-590X.2023.02.013

    Shi L, Qin H, Liu L T. Development situation and trend of world marine fishing industry and its enlightenment to China[J]. Marine Sciences, 2018, 42(11): 126-134 (in Chinese). doi: 10.11759/hykx20181011002

    Qu S. On the Origin and development of ancient fishing in China from archaeological discoveries[J]. Agricultural Archaeology, 1986(2): 220-225 (in Chinese).

    Song Z L. Ancient fishing techniques[J]. Fossils, 1979(2): 23-24 (in Chinese).

    An J Y. A harpoon unearthed in Xiaogushan site——also on the relations with the detachable head harpoon of Neolithic[J]. Acta Anthropologica Sinica, 1991, 10(1): 12-18 (in Chinese).

    Fang H, Ruan W, Ji W W, et al. On historical sources of world ancient fishery and its development[J]. Fishery Information & Strategy, 2019, 34(3): 180-187 (in Chinese).

    Shi D J. The glorious history of Chinese fisheries[J]. Journal of Beijing Fisheries, 1999(6): 39-40 (in Chinese).

    Shen H X. The history and application of V. D. trawl in China[J]. China Fisheries, 1989(11): 42-43 (in Chinese).

    Chen L, Jia F. The development process of distant trawlers[J]. Modern Fishery Information, 1996, 11(3): 1-6 (in Chinese).

    Shi B. The application of electronic technology in marine fisheries[J]. Electronic Technology, 1964(3): 11-14 (in Chinese).

    Gu S M. Discussion on the applicability of horizontal fish probe in fishing grounds of the East and Yellow Seas[J]. Fishery Modernization, 1979(3): 26-29,41 (in Chinese).

    Wang L M. Advances in the experiment study of ultra-high strength fibers and its application in fishery[J]. Journal of Fisheries of China, 2000, 24(5): 480-484 (in Chinese).

    Xu H, Zhang J H, Ding J L, et al. The review of the research progress of fishery equipment and engineering technology at home and abroad (Continued)[J]. Fishery Modernization, 2010, 37(3): 1-5,19 (in Chinese).

    Wu W Y. The Study on Individual transferable quota system based on adaptive management[D]. Qingdao: Ocean University of China, 2013 (in Chinese).

    Chen Y. Application of individual transferable quota system in marine fishery catching management in China[D]. Shanghai: Shanghai Ocean University, 2021 (in Chinese).

    Huang H L, Feng C, Li L Z, et al. The development status and prospect of contemporary marine fisheries[J]. Journal of Fishery Sciences of China, 2022, 29(6): 938-949 (in Chinese).

    Tang Z M, Zhang X, Huang H L, et al. Analysis of the causes of high energy consumption in marine fishing in China and suggestions for countermeasures[J]. China Fisheries, 2010(6): 24-25 (in Chinese).

    Food and Agriculture Organization of the United Nations FAO. The state of world fisheries and aquaculture 2018[R]. Rome: FAO, 2018: 2-120.

    Watson J W, Seidel W R. Evaluation of techniques to decrease sea turtle mortalities in the southeastern United States shrimp fishery[R]. ICES CM, 1980: 1-8.

    Seidel W R, McVea Jr C. Development of a sea turtle excluder shrimp trawl for the southeast US penaeid shrimp fishery[M]//Biology and conservation of sea turtles. Washington, DC, USA: Smithsonian Institution Press, 1982: 497-502.

    Balazs G H. Assessment of Hawaiian green turtles utilising coastal foraging pastures at Pala’au, Molokai[C]//Proceedings of a workshop on assessing abundance and trends for in-water sea turtle populations. NOAA Technical Memorandum NMFS-SEFSC-445, 2000: 42-44.

    Watling L, Norse E A. Disturbance of the seabed by mobile fishing gear: A comparison to forest clearcutting[J]. Conservation Biology, 1998, 12(6): 1180-1197. doi: 10.1046/j.1523-1739.1998.0120061180.x

    Krost P, Bernhard M, Werner F, et al. Otter-trawl tracks in Kiel Bay (Western Baltic) mapped by side-scan sonar[J]. Meeresforsch, 1990, 32: 344-353.

    Riemann B, Hoffmann E. Ecological consequences of dredging and bottom trawling in the Limfjord, Denmark[J]. Marine Ecology Progress Series, 1991, 69: 171-178. doi: 10.3354/meps069171

    Revill A S, Jennings S. The capacity of benthos release panels to reduce the impacts of beam trawls on benthic communities[J]. Fisheries Research, 2005, 75(1-3): 73-85. doi: 10.1016/j.fishres.2005.04.012

    Kaiser M J, Bullimore B, Newman P, et al. Catches in ‘ghost fishing’ set nets[J]. Marine Ecology Progress Series, 1996, 145: 11-16. doi: 10.3354/meps145011

    Matsuoka T, Nakashima T, Nagasawa N. A review of ghost fishing: scientific approaches to evaluation and solutions[J]. Fisheries Science, 2005, 71(4): 691-702. doi: 10.1111/j.1444-2906.2005.01019.x

    Institute of Information Technology, Chinese Academy of Fishery Sciences. Overview of foreign fisheries[M]. Beijing: Science Press, 1991: 31-33 (in Chinese).

    Van Marlen B. Trawl with dyneema give 15 percent energy saving[J]. World Fishing, 1990, 39(10): 50.

    Gudmundur G. Iceland’s massive mid-water trawl[J]. Fishing News International, 1993, 32(2): 9.

    Van Beelen. New-type netting in big demand[J]. Fishing News International, 1995, 34(2): 32-33.

    Gramaxo J. Higher price but a big return[J]. Fishing News International, 1995, 34(3): 36.

    Kim S, Kim P, Lim J, et al. Use of biodegradable driftnets to prevent ghost fishing: physical properties and fishing performance for yellow croaker[J]. Animal Conservation, 2016, 19(4): 309-319. doi: 10.1111/acv.12256

    Kim M K, Yun K C, Kang G D, et al. Biodegradable resin composition and fishing net produced from same: US, 2017112111[P]. 2017-04-27.

    Kim S, Park S W, Lee K. Fishing performance of environmentally friendly tubular pots made of biodegradable resin (PBS/PBAT) for catching the conger eel Conger myriaster[J]. Fisheries Science, 2014, 80(5): 887-895. doi: 10.1007/s12562-014-0785-z

    Kim S, Park S, Lee K. Fishing performance of an Octopus minor net pot made of biodegradable twines[J]. Turkish Journal of Fisheries and Aquatic Sciences, 2014, 14(1): 21-30.

    Grimaldo E, Herrmann B, Su B, et al. Comparison of fishing efficiency between biodegradable gillnets and conventional nylon gillnets[J]. Fisheries Research, 2019, 213: 67-74. doi: 10.1016/j.fishres.2019.01.003

    Yue D D, Wang L M, Zhang X, et al. The development trends of marine fishing equipment and technology in China[J]. Journal of Agricultural Science and Technology, 2013, 15(6): 20-26 (in Chinese).

    Yang F, Zhang M, Shi J G, et al. Progress on research of degradable materials for fishing[J]. Marine Fisheries, 2019, 41(4): 503-512 (in Chinese).

    East China Sea Fisheries Research Institute. The "complete set of fishing gear and equipment for deep-sea fishing" was selected as one of the 10 major new equipment for agriculture and rural areas in China in 2020[J]. Fisheries Science & Technology Information, 2021, 48(1): 60 (in Chinese).

    Kajikawa Y, Tokai T, Hu F X. Modeling of available size selectivity of the SURF-BRD for shrimp beam trawl[J]. Fisheries Science, 2013, 79(6): 879-894. doi: 10.1007/s12562-013-0668-8

    Isaksen B, Valdemarsen J W, Larsen R B, et al. Reduction of fish by-catch in shrimp trawl using a rigid separator grid in the aft belly[J]. Fisheries Research, 1992, 13(3): 335-352. doi: 10.1016/0165-7836(92)90086-9

    Broadhurst M K, Kennelly S J, O'Doherty G. Technical note: specifications for the construction and installation of two by-catch reducing devices (BRDs) used in New South Wales prawn-trawl fisheries[J]. Marine and Freshwater Research, 1997, 48(6): 485-489. doi: 10.1071/MF97049

    Silva C N S, Broadhurst M K, Dias J H, et al. The effects of Nordmøre-grid bar spacings on catches in a Brazilian artisanal shrimp fishery[J]. Fisheries Research, 2012, 127-128: 188-193. doi: 10.1016/j.fishres.2012.01.004

    Herrmann B, Sistiaga M, Larsen R B, et al. Understanding sorting grid and codend size selectivity of Greenland halibut (Reinhardtius hippoglossoides)[J]. Fisheries Research, 2013, 146: 59-73. doi: 10.1016/j.fishres.2013.04.004

    Isaksen B, Gamst K, Kvalsvik K, et al. Comparison of selectivity and user properties between Sort-X and single grid for two-panel bottom trawl for cod (Gadus morhua)[C]//Proceedings of the ICES FTFB WG Meeting. La Coruna, 1998.

    Tringali L S. Biología y pesca de la merluza del Mar Argentino[R]. Mar del Plata: Instituto Nacional de Investigación y Desarrollo Pesquero, 2012.

    Smartrawl project by fisheries innovation and sustainability[EB/OL].https://fisorg.uk/smartrawl/.

    Deep vision delivers image processing- and computer vision solutions for efficient and sustainable fishing[EB/OL]. http://www.deepvision.no.

    Sullivan B J, Kibel B, Kibel P, et al. At‐sea trialling of the Hookpod: a ‘one-stop’ mitigation solution for seabird bycatch in pelagic longline fisheries[J]. Animal Conservation, 2018, 21(2): 159-167. doi: 10.1111/acv.12388

    Poisson F, Budan P, Coudray S, et al. New technologies to improve bycatch mitigation in industrial tuna fisheries[J]. Fish and Fisheries, 2022, 23(3): 545-563. doi: 10.1111/faf.12631

    Lopez J, Ferarios J M, Santiago J, et al. Evaluating potential biodegradable twines for use in the tropical tuna FAD fishery[J]. Fisheries Research, 2019, 219: 105321. doi: 10.1016/j.fishres.2019.105321

    Moreno G, Orue B, Restrepo V. Pilot project to test biodegradable ropes at FADs in real fishing conditions in the western Indian Ocean[J]. Collect. Vol. Sci. Pap. ICCAT, 2018, 74(5): 2199-2208.

    Zudaire I, Moreno G, Murua J, et al. Biodegradable drifting fish aggregating devices: current status and future prospects[J]. Marine Policy, 2023, 153: 105659. doi: 10.1016/j.marpol.2023.105659

    Song X F, Chen X Z, Huang H L, et al. Selectivity of Parimichthys polyactis of bottom trawl in the East China Sea[J]. Journal of Shanghai Ocean University, 2015, 24(3): 449-456 (in Chinese).

    Huang H L, Tang F H, Chen X Z, et al. Nets selectivity of capsule size diamond mesh of Trichiurus haumela in East China Sea during summer[J]. Journal of Agricultural Resources and Environment, 2016, 33(5): 433-442 (in Chinese).

    You Z B, Zhao X Y, Li X S, et al. Selectivity of cod-end mesh of pair-trawlers in the Yellow Sea[J]. Fisheries Science, 2017, 36(4): 436-442 (in Chinese).

    Sun M C, Zhang J, Fan W. A study on minimum mesh size of shrimp beam trawling on Lüsi fishing grounds[J]. Marine Fisheries, 2002, 24(3): 120-124 (in Chinese).

    Zhang X F, Yang L, Tan Y G, et al. Comparison of selectivity of square mesh codend on Decapterus maruadsi and Saurida tumbil[J]. Journal of Zhanjiang Ocean University, 2002, 22(3): 26-32 (in Chinese).

    Yang B Z, Yang L, Tan Y G, et al. Preliminary study of catching performance of a combined diamond- and square-mesh cod-end of a shrimp beam trawl in the northern South China Sea[J]. Marine Sciences, 2017, 41(1): 57-64 (in Chinese).

    Song X F, Chen X Z, Li L Z, et al. Selectivity of diamond and square mesh codends in the bottom-trawl fishery for Larimichthys polyactis in the East China Sea[J]. Marine Fisheries, 2017, 39(1): 100-109 (in Chinese).

    Zhang J, Wang Z Q, Zhang X F, et al. Preliminary study on Y-shaped exclusion device for juvenile fish in Chinese stow net[J]. Marine Fisheries, 2016, 38(1): 66-73 (in Chinese).

    Sun M C, Yao L F. Preliminary experimental studies on the separation of shrimp from fish in beam trawling[J]. Marine Fisheries, 1998(3): 111-115 (in Chinese).

    Luo Y B, Zhang J, Sun M C. Preliminary study on separator shrimp trawl in Dapeng Gulf[J]. South China Fisheries Science, 2007, 3(1): 14-19 (in Chinese).

    Zhang J, Sun M C, Peng Y Z, et al. Separating efficiency of separator panels rigged in beam trawls for shrimps[J]. Journal of Fishery Sciences of China, 2008, 15(5): 845-852 (in Chinese). doi: 10.3321/j.issn:1005-8737.2008.05.018

    Zhang J, Bai L. Efficiency of separator panels in beam trawls for crabs[J]. Marine Fisheries, 2013, 35(2): 217-223 (in Chinese).

    Zhang J, Shi J G, Zhang P, et al. Separating performance for shrimps of sorting grid rigged in beam trawls[J]. Journal of Shanghai Fisheries University, 2008, 17(6): 726-733 (in Chinese).

    Zhang J, Zhang P, Sun M C, et al. Fish separating efficiency of sorting grid rigged in beam trawls[J]. Oceanologia et Limnologia Sinica, 2009, 40(4): 511-517 (in Chinese).

    Wang Z Q, Tang H, Xu L X, et al. A review on fishing gear in China: selectivity and application[J]. Aquaculture and Fisheries, 2022, 7(4): 345-358. doi: 10.1016/j.aaf.2022.02.006

    Xu H, Chen J Y, Fang H, et al. Chinese marine fishery transformation and strategic emerging industry of deep ocean fishery[J]. Fishery Modernization, 2020, 47(3): 1-9 (in Chinese). doi: 10.3969/j.issn.1007-9580.2020.03.001

    Zong Y M, Li G D, Chen Z X, et al. Analysis of beamforming performance of cylindrical array multi-beam fishery sonar[J]. Fishery Modernization, 2020, 47(6): 66-73 (in Chinese).

    Zong Y M, Wei K, Li G D, et al. Research progress on key technologies of marine fishery acoustic equipment[J]. Fishery Modernization, 2021, 48(3): 28-35 (in Chinese).

    Llorens S, Pérez-Arjona I, Soliveres E, et al. Detection and target strength measurements of uneaten feed pellets with a single beam echosounder[J]. Aquacultural Engineering, 2017, 78: 216-220. doi: 10.1016/j.aquaeng.2016.10.008

    Zhang H J, Wei Q W, Yang D G. Development trend of echosounders and their application in fisheries[J]. Journal of Hydroecology, 2008, 28(1): 9-13 (in Chinese).

    Zhang T W, Qin S J, Tang J L, et al. Typical split-beam echosounder and its application[J]. Ship Science and Technology, 2019, 41(2): 131-134 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.02.026

    Li B, Chen G B, Guo Y, et al. Hydroacoustic assessment of spatial-temporal distribution and biomass of fishery resources in the central South China Sea[J]. South China Fisheries Science, 2016, 12(4): 28-37 (in Chinese).

    Simmonds J, MacLennan D. Fisheries acoustics: theory and practice[M]. 2nd ed. Oxford: Blackwell Science Ltd, 2005: 227-228.

    Hu J H, Wang Y, Zhao H, et al. Sidelobe level control of split beam fish detector transducer[J]. Acoustics and Electronics Engineering, 2016(4): 35-37 (in Chinese).

    Wu C B, Chen Z X, Li G D, et al. Modeling and simulation analysis of detection performance prediction of wideband split-beam fish finder[J]. Fishery Modernization, 2020, 47(3): 72-79 (in Chinese). doi: 10.3969/j.issn.1007-9580.2020.03.011

    Qian T. Application of split-beam processing of line array in underwater acoustic detection[J]. Technical Acoustics, 2015, 34(6): 551-555 (in Chinese).

    Williamson B J, Fraser S, Blondel P, et al. Multisensor acoustic tracking of fish and seabird behavior around tidal turbine structures in Scotland[J]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 948-965. doi: 10.1109/JOE.2016.2637179

    Melvin G D. Observations of in situ Atlantic bluefin tuna (Thunnus thynnus) with 500-kHz multibeam sonar[J]. ICES Journal of Marine Science, 2016, 73(8): 1975-1986. doi: 10.1093/icesjms/fsw077

    Zhang B. Research of fish school acoustic scattering model and its simulation[D]. Harbin: Harbin Engineering University, 2009 (in Chinese).

    Du W D, Li H S, Chen B W, et al. Features acquisition of fish with swim bladder based on acoustic scattering characteristics[J]. Journal of Applied Acoustics, 2014, 33(6): 505-511 (in Chinese).

    Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences. China's first omnidirectional digital multi-beam fishing sonar has successfully completed sea trials and been delivered for use[J]. Fisheries Science & Technology Information, 2022, 49(6): 381-382 (in Chinese).

    He B. Current status and development trends of fishing equipment technology in world fisheries[J]. China Fisheries, 2012(5): 43-45 (in Chinese). doi: 10.3969/j.issn.1002-6681.2012.05.017

    Zhang J. Summary of research progress on fishing equipment and engineering technology for deep-sea fisheries at home and abroad[J]. Science and Technology Innovation Herald, 2018, 15(10): 22,24 (in Chinese).

计量
  • 文章访问数:  800
  • PDF下载数:  154
  • 施引文献:  0
出版历程
收稿日期:  2023-10-19
修回日期:  2023-11-06
刊出日期:  2023-11-01

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发