• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-0615

主管 中国科学技术协会

主办 中国水产学会

中国水产养殖装备发展现状

刘世晶 李国栋 刘晃 郑浩君 陈军

上一篇

下一篇

刘世晶, 李国栋, 刘晃, 郑浩君, 陈军. 2023. 中国水产养殖装备发展现状. 水产学报, 47(11): 119615. doi: 10.11964/jfc.20231014186
引用本文: 刘世晶, 李国栋, 刘晃, 郑浩君, 陈军. 2023. 中国水产养殖装备发展现状. 水产学报, 47(11): 119615. doi: 10.11964/jfc.20231014186
Shijing LIU, Guodong LI, Huang LIU, Haojun ZHENG, Jun CHEN. 2023. Current development status of aquaculture equipment in China. Journal of Fisheries of China, 47(11): 119615. doi: 10.11964/jfc.20231014186
Citation: Shijing LIU, Guodong LI, Huang LIU, Haojun ZHENG, Jun CHEN. 2023. Current development status of aquaculture equipment in China. Journal of Fisheries of China, 47(11): 119615. doi: 10.11964/jfc.20231014186

中国水产养殖装备发展现状

  • 基金项目:

    青岛海洋科技中心山东省专项经费(2022QNLM030001-2)

详细信息
    作者简介:

    刘世晶,从事渔业信息化、图像处理、模式识别和机器视觉相关领域研究,E-mail:liushijing@fmiri.ac.cn

    通讯作者: 陈军 (照片), 从事数字渔业相关领域研究,E-mail: chenjun@fmiri.ac.cn
  • 中图分类号: S 969

Current development status of aquaculture equipment in China

  • Fund Project: 青岛海洋科技中心山东省专项经费(2022QNLM030001-2)
More Information
  • 水产养殖装备是高效发展现代水产养殖,促进水产养殖产业结构改革的重要技术支撑。基于养殖装备、信息技术和自动控制等多学科协同发力的智慧水产养殖模式已成为现代渔业高质量发展的新趋势与重要抓手,这也对水产养殖现有装备及其相关技术提出了更高的智能化要求。本文梳理了池塘、工厂化、网箱、筏式和底播养殖等5种主要养殖方式装备发展现状,从数字化和智能化角度分析了环境监测、对象感知、饲料投喂、分级计数等养殖环节中常用装备的研究进展,指出了制约我国水产养殖智能装备与技术发展的关键问题,提出了“机械化、自动化、智能化”的水产养殖装备与技术发展的新思路,旨在实现我国从水产养殖大国向水产养殖强国的历史转变。
  • 加载中
  • 图 1  养殖对象信息感知技术框图

    Figure 1.  Aquaculture objects intelligent sensing technology framework

    表 1  环境监测装备产业应用现状

    Table 1.  The current application status of environmental monitoring equipment industry

    系统类型
    type
    典型代表
    typical representative
    获取数据
    data procurement
    应用现状
    current status
    养殖环境监测系统 养殖用水监测 溶氧、pH、水温、盐度、氧化还原电位(ORP)等 逐步开始产业化应用
    尾水监测 三态氮、亚硝酸盐、COD等 应用较少
    养殖气象监测 气温、气压、光辐照度、风速、风向、降雨量等 广泛应用
    下载: 导出CSV

    表 2  投喂装备研究现状

    Table 2.  Research status of feeding equipment

    应用场景
    application scenarios
    主要研究方向
    main research directions
    成熟度
    stage
    池塘 自巡航虾塘移动投喂船 试验样机
    料塔式集中投喂机 产品成熟
    工厂化 轨道式投饲机 试验样机
    智能投饲车 研发阶段
    网箱 远距离风力投喂 产品成熟
    大型投喂船 产品成熟
    下载: 导出CSV

    表 3  智能投喂决策算法研究现状

    Table 3.  Research status of intelligent feeding decision algorithms

    技术类型
    type of technology
    主要研究方向
    main research directions
    适用场景
    applicable scene
    成熟度
    stage
    光学
    optics
    水上摄食行为监测 池塘、工厂化、网箱 研发阶段
    水下集群行为监测 工厂化、网箱 研发阶段
    声学
    acoustics
    被动声学技术 池塘、网箱 试验样机
    主动声学技术 网箱 研发阶段
    下载: 导出CSV
  • Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. 2021 China Fisheries Statistical Yearbook[M]. Beijing: China Agriculture Press, 2021 (in Chinese).

    Ruan W, Wang Y, Ji W W, et al. Progress of sustainable development and management of aquaculture[J]. Fishery Information & Strategy, 2013, 28(4): 267-272 (in Chinese). doi: 10.3969/j.issn.1004-8340.2013.04.004

    Task Force for the Study on Sustainable Development Strategy of Chinese Aquaculture Comprehensive Research Group. Development strategy on environmentally friendly aquaculture[J]. Engineering Sciences, 2016, 18(3): 1-7 (in Chinese). doi: 10.3969/j.issn.1009-1742.2016.03.002

    Ye N H, Zhuang Z M, Wang Q Y. Development strategy for realizing the healthy aquaculture industry concept[J]. Engineering Sciences, 2016, 18(3): 101-104 (in Chinese). doi: 10.3969/j.issn.1009-1742.2016.03.018

    Liu C L, Lin H Z, Li Y M, et al. Unmanned fishing grounds leading agricultural intelligence[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18 (in Chinese). doi: 10.6041/j.issn.1000-1298.2020.01.001

    Huang Y X, Bao X T, Xu H. Research progress of fishery equipment science and technology in China[J]. Fishery Modernization, 2023, 50(4): 1-11 (in Chinese).

    Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. 2022 China Fisheries Statistical Yearbook[M]. Beijing: China Agriculture Press, 2022 (in Chinese).

    Liu T C, Liu J, Wang J, et al. Optimization of the intelligent sensing model for environmental information in aquaculture waters based on the 5G smart sensor network[J]. Journal of Sensors, 2022, 2022: 6409046.

    Ehlers S M, Maxein J, Koop J H E. Low‐cost microplastic visualization in feeding experiments using an ultraviolet light‐emitting flashlight[J]. Ecological Research, 2020, 35(1): 265-273. doi: 10.1111/1440-1703.12080

    Wei Y G, Li W S, An D, et al. Equipment and intelligent control system in aquaponics: A review[J]. IEEE Access, 2019, 7: 169306-169326. doi: 10.1109/ACCESS.2019.2953491

    Føre M, Frank K, Norton T, et al. Precision fish farming: A new framework to improve production in aquaculture[J]. Biosystems Engineering, 2018, 173: 176-193. doi: 10.1016/j.biosystemseng.2017.10.014

    Biazi V, Marques C. Industry 4.0-based smart systems in aquaculture: A comprehensive review[J]. Aquacultural Engineering, 2023, 103: 102360. doi: 10.1016/j.aquaeng.2023.102360

    Cao S Q, Ge Z R, Zhang Z. Buoy water quality monitoring system and prediction model based on internet of things[J]. Journal of Agricultural Machinery, 2021, 52(11): 210-218 (in Chinese). doi: 10.6041/j.issn.1000-1298.2021.11.022

    Zhang J L, Xu L H, Liu S J. Classification of Atlantic salmon feeding behavior based on underwater machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 158-164 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.13.019

    Zuo Q, Tian Y C, Ma G Q. Research progress and problems of aquaculture intelligent feeding system[J]. Journal of Tianjin Agricultural University, 2020, 27(4): 73-77 (in Chinese). doi: 10.19640/j.cnki.jtau.2020.04.014

    Li M Z, Zhang G F, Yu G Z, et al. Design and experiment of grading and counting device for scallop seedling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 93-101 (in Chinese). doi: 10.11975/j.issn.1002-6819.2015.21.012

    Gong M G, Meng F L, Huang Y X, et al. Research on development status and countermeasures of intelligent aquaculture in China[J]. Fishery Modernization, 2018, 45(6): 60-66 (in Chinese). doi: 10.3969/j.issn.1007-9580.2018.06.010

    Huang Y X, Ding J L, Bao X T, et al. Development research on China fishery equipment and engineering technology[J]. Fishery Modernization, 2019, 46(5): 1-8 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.05.001

    Zhou X Y, Ni Q, Xu H, et al. Development report of China aquaculture whole-process mechanization in 2021[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 1-4 (in Chinese). doi: 10.13733/j.jcam.issn.2095-5553.2022.12.001

    Gu H T, Wang Y Q. The development status, issues and trends of pond aeration technology in China[J]. Fishery Modernization, 2014, 41(5): 65-68 (in Chinese). doi: 10.3969/j.issn.1007-9580.2014.05.19

    Wang X Y, Hong J Q, Sun Y P, et al. Design of trajectory planning system for river crab farming with automatic feeding boat[J]. Journal of Physics:Conference Series, 2020, 1575(1): 012143. doi: 10.1088/1742-6596/1575/1/012143

    Hong Y, Chen X L, Tian C F, et al. Design and test of a kind of moving feeding device for crab and shrimp ponds[J]. Fishery Modernization, 2018, 45(3): 9-14 (in Chinese). doi: 10.3969/j.issn.1007-9580.2018.03.002

    Chen X L, Tian C F, Yang J P, et al. Research on pneumatic automatic feeding machine for intensive pond aquaculture[J]. Fishery Modernization, 2016, 43(5): 18-22 (in Chinese). doi: 10.3969/j.issn.1007-9580.2016.05.004

    Liu X G, Xu H, Zhang Y J, et al. Development and experiment of movable pond aquaculture water quality regulation machine based on solar energy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 1-10 (in Chinese). doi: 10.3969/j.issn.1002-6819.2014.19.001

    Wu Z F, Cheng G F, Wang X R, et al. Evaluation on aeration performance of movable solar aerator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 246-252 (in Chinese). doi: 10.3969/j.issn.1002-6819.2014.23.031

    Shang J Y, Tang Y H. Research progress of the dissolved oxygen sensor[J]. Micronanoelectronic Technology, 2014, 51(3): 168-175,202 (in Chinese). doi: 10.13250/j.cnki.wndz.2014.03.006

    Liu Y S, Diao Y X, Hu G X, et al. Renewable antimony-based pH sensor[J]. Journal of Electroanalytical Chemistry, 2023, 928: 117085. doi: 10.1016/j.jelechem.2022.117085

    Trevathan J, Read W, Sattar A. Implementation and calibration of an IoT light attenuation turbidity sensor[J]. Internet of Things, 2022, 19: 100576. doi: 10.1016/j.iot.2022.100576

    Chauhan M, Singh V K. Hydrothermally grown ZnO nanorods based optical fiber sensor for salinity detection[J]. Measurement, 2022, 203: 111913. doi: 10.1016/j.measurement.2022.111913

    Liu F, Wei S P, Li B, et al. A novel fast response and high precision water temperature sensor based on Fiber Bragg Grating[J]. Optik, 2023, 289: 171257. doi: 10.1016/j.ijleo.2023.171257

    Huang Y X, Tian C F, Meng F L, et al. Research on the history, current situation and development of pond culture facilities and equipment in China[J]. Fishery Modernization, 2020, 47(3): 10-15 (in Chinese). doi: 10.3969/j.issn.1007-9580.2020.03.002

    Huang Y X, Xu H, Ding J L. Situation of China Land-based Aquaculture Engineering Equipment and Suggestion for Its Development[J]. Guizhou Agricultural Sciences, 2016, 44(7): 87-91 (in Chinese). doi: 10.3969/j.issn.1001-3601.2016.07.025

    Yang J M, Zhu H F. Lift type automatic water quality detection system for aquaculture[J]. Fishery Modernization, 2016, 43(4): 1-5 (in Chinese). doi: 10.3969/j.issn.1007-9580.2016.04.001

    Cui L X, Ni Q, Zhuang B L, et al. Design and experiment for PLC-based rail-type automatic feeding system of factory aquaculture[J]. Guangdong Agricultural Sciences, 2014, 41(22): 159-165 (in Chinese). doi: 10.3969/j.issn.1004-874X.2014.22.035

    Xiao M H, Li Y J, Wang X C, et al. Research progress of aquaculture tailwater treatment technology and equipment[J]. Journal of Nanjing Agricultural University, 2023, 46(1): 1-13 (in Chinese). doi: 10.7685/jnau.202201028

    Chen H. Design and application of rotary drum backwashing microfilter[J]. Fujian Agricultural Machinery, 2022(1): 4-7,25 (in Chinese). doi: 10.3969/j.issn.1004-3969.2022.01.002

    Roy S M, Pareek C M, Machavaram R, et al. Optimizing the aeration performance of a perforated pooled circular stepped cascade aerator using hybrid ANN-PSO technique[J]. Information Processing in Agriculture, 2022, 9(4): 533-546. doi: 10.1016/j.inpa.2021.09.002

    Guan C W, Yang J, Shan J J, et al. Water treatment performance of O3/UV reaction system in recirculating aquaculture systems[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 253-259 (in Chinese). doi: 10.3969/j.issn.1002-6819.2014.23.032

    Shi M M, Ruan Y J, Liu H, et al. Solid phase distribution simulation of culture pond with recirculating biofloc technology based on computational fluid dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 252-258 (in Chinese). doi: 10.11975/j.issn.1002-6819.2017.02.035

    Zhang H G, Guan C W. Effluent purifying performance of new style fluidized-sand biofilter in recirculating aquaculture system[J]. Chinese Agricultural Science Bulletin, 2016, 32(29): 29-35 (in Chinese). doi: 10.11924/j.issn.1000-6850.casb16070138

    Huang X H, Pang G L, Yuan T P, et al. Review of engineering and equipment technologies for deep-sea cage aquaculture in China[J]. Progress in Fishery Sciences, 2022, 43(6): 121-131 (in Chinese). doi: 10.19663/j.issn2095-9869.20210816003

    Bao X T, Chen Z X, Cui M C, et al. Discussion and consideration on the development of deep sea aquaculture equipment in China[J]. Fishery Modernization, 2022, 49(5): 8-14 (in Chinese).

    Fu X Y, Huang D Z, Xu H L, et al. Overview of the Development of Cage Aquaculture in Deep Sea[J]. Journal of Aquaculture, 2021, 42(10): 23-26 (in Chinese). doi: 10.3969/j.issn.1004-2091.2021.10.006

    Wang Z Y, Feng S Q. Current status of fish capture technology in cage aquaculture[J]. Journal of Aquaculture, 2021, 42(7): 64-65 (in Chinese). doi: 10.3969/j.issn.1004-2091.2021.07.017

    Huang Y X, Xu H, Ding J L. Research on the development of offshore aquaculture facilities and equipment in China[J]. Fishery Modernization, 2016, 43(2): 76-81 (in Chinese). doi: 10.3969/j.issn.1007-9580.2016.02.014

    Selection results of light simplified technical equipment for pond aquaculture tail water treatment and raft suspended and bottom sowing enhanced aquaculture in 2022[EB/EO]. (2022-10-14). http://www.amic.agri.cn/secondLevelPage/info/30/146652 (in Chinese).

    Li D L, Yang H. State-of-the-art review for internet of things in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 1-20 (in Chinese). doi: 10.6041/j.issn.1000-1298.2018.01.001

    Yin B Q, Cao S S, Fu Z T, et al. Review and trend analysis of water quality monitoring and control technology in aquaculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 1-13 (in Chinese). doi: 10.6041/j.issn.1000-1298.2019.02.001

    Zhang K, Zhang H L, Li W J, et al. PtOEP/PS composite particles based on fluorescent sensor for dissolved oxygen detection[J]. Materials Letters, 2016, 172: 112-115. doi: 10.1016/j.matlet.2016.02.119

    Rungsima C, Boonyan N, Klorvan M, et al. Hydrogel sensors with pH sensitivity[J]. Polymer Bulletin, 2021, 78(10): 5769-5787. doi: 10.1007/s00289-020-03398-8

    Prerana M R, Shenoy B P, Pal B D, et al. Design, analysis, and realization of a turbidity sensor based on collection of scattered light by a fiber-optic probe[J]. IEEE Sensors Journal, 2012, 12(1): 44-50. doi: 10.1109/JSEN.2011.2128306

    Pu H B, Liu D, Qu J H, et al. Applications of imaging spectrometry in inland water quality monitoring—a review of recent developments[J]. Water, Air, & Soil Pollution, 2017, 228(4): 131.

    Carstea E M, Bridgeman J, Baker A, et al. Fluorescence spectroscopy for wastewater monitoring: A review[J]. Water Research, 2016, 95: 205-219. doi: 10.1016/j.watres.2016.03.021

    Li D L, Liu C. Recent advances and future outlook for artificial intelligence in aquaculture[J]. Smart Agriculture, 2020, 2(3): 1-20 (in Chinese).

    Duan Y E, Li D L, Li Z B, et al. Review on visual characteristic measurement research of aquatic animals based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 1-11 (in Chinese). doi: 10.11975/j.issn.1002-6819.2015.15.001

    Endo H, Wu H Y. Biosensors for the assessment of fish health: A review[J]. Fisheries Science, 2019, 85(4): 641-654. doi: 10.1007/s12562-019-01318-y

    Li D L, Wang G X, Du L, et al. Recent advances in intelligent recognition methods for fish stress behavior[J]. Aquacultural Engineering, 2022, 96: 102222. doi: 10.1016/j.aquaeng.2021.102222

    Hvas M, Folkedal O, Oppedal F. Heart rate bio-loggers as welfare indicators in Atlantic salmon (Salmo salar) aquaculture[J]. Aquaculture, 2020, 529: 735630. doi: 10.1016/j.aquaculture.2020.735630

    Wu H Y, Aoki A, Arimoto T, et al. Fish stress become visible: A new attempt to use biosensor for real-time monitoring fish stress[J]. Biosensors and Bioelectronics, 2015, 67: 503-510. doi: 10.1016/j.bios.2014.09.015

    Wu H Y, Ohnuki H, Hibi K, et al. Development of a label-free immunosensor system for detecting plasma cortisol levels in fish[J]. Fish Physiology and Biochemistry, 2016, 42(1): 19-27. doi: 10.1007/s10695-015-0113-2

    Wu H Y, Ohnuki H, Ota S, et al. New approach for monitoring fish stress: A novel enzyme-functionalized label-free immunosensor system for detecting cortisol levels in fish[J]. Biosensors and Bioelectronics, 2017, 93: 57-64. doi: 10.1016/j.bios.2016.10.001

    Endo H, Yonemori Y, Musiya K, et al. A needle-type optical enzyme sensor system for determining glucose levels in fish blood[J]. Analytica Chimica Acta, 2006, 573-574: 117-124. doi: 10.1016/j.aca.2006.04.068

    Takase M, Yoneyama Y, Murata M, et al. Mediator-type biosensor for real-time wireless monitoring of blood glucose concentrations in fish[J]. Fisheries Science, 2012, 78(3): 691-698. doi: 10.1007/s12562-012-0495-3

    Makaras T, Razumienė J, Gurevičienė V, et al. A new approach of stress evaluation in fish using β-D-Glucose measurement in fish holding-water[J]. Ecological Indicators, 2020, 109: 105829. doi: 10.1016/j.ecolind.2019.105829

    Saberioon M, Císař P. Automated within tank fish mass estimation using infrared reflection system[J]. Computers and Electronics in Agriculture, 2018, 150: 484-492. doi: 10.1016/j.compag.2018.05.025

    Hao M M, Yu H L, Li D L. The measurement of fish size by machine vision-a review[C]//Proceedings of the 9th International Conference on Computer and Computing Technologies in Agriculture. Beijing, China: Springer, 2016: 15-32.

    Pérez D, Ferrero F J, Álvarez I, et al. Automatic measurement of fish size using stereo vision[C]//Proceedings of 2018 IEEE International Instrumentation and Measurement Technology Conference. Houston: IEEE, 2018.

    Liu S J, Li G D, Tu X Y, et al. Research on the development of aquaculture production information technology[J]. Fishery Modernization, 2021, 48(3): 1-9 (in Chinese).

    Garcia R, Prados R, Quintana J, et al. Automatic segmentation of fish using deep learning with application to fish size measurement[J]. ICES Journal of Marine Science, 2020, 77(4): 1354-1366. doi: 10.1093/icesjms/fsz186

    Costa C, Antonucci F, Boglione C, et al. Automated sorting for size, sex and skeletal anomalies of cultured seabass using external shape analysis[J]. Aquacultural Engineering, 2013, 52: 58-64. doi: 10.1016/j.aquaeng.2012.09.001

    Qian C. The three-dimensional detection system for high-throughput growth status of underwater fish independently developed by the Fishery Machinery Institute has successfully completed on-board testing and been delivered for use on the "Guoxin 1" ship[EB/OL]. (2022-11-24). http://www.fmiri.ac.cn/info/1013/22528.htm (in Chinese).

    Papadakis V M, Papadakis I E, Lamprianidou F, et al. A computer-vision system and methodology for the analysis of fish behavior[J]. Aquacultural Engineering, 2012, 46: 53-59. doi: 10.1016/j.aquaeng.2011.11.002

    Wang H, Zeng L J, Yin C Y. A video tracking system for measuring the position and body deformation of a swimming fish[J]. Review of Scientific Instruments, 2002, 73(12): 4381-4384. doi: 10.1063/1.1518143

    Dell A I, Bender J A, Branson K, et al. Automated image-based tracking and its application in ecology[J]. Trends in Ecology & Evolution, 2014, 29(7): 417-428.

    Kleinhappel T K, Pike T W, Burman O H P. Stress-induced changes in group behaviour[J]. Scientific Reports, 2019, 9(1): 17200. doi: 10.1038/s41598-019-53661-w

    Israeli D, Kimmel E. Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision[J]. Aquacultural Engineering, 1996, 15(6): 423-440. doi: 10.1016/S0144-8609(96)01009-6

    Zheng H Y, Liu R, Zhang R, et al. A method for real-time measurement of respiratory rhythms in medaka (Oryzias latipes) using computer vision for water quality monitoring[J]. Ecotoxicology and Environmental Safety, 2014, 100: 76-86. doi: 10.1016/j.ecoenv.2013.11.016

    Terayama K, Hioki H, Sakagami M A. Measuring tail beat frequency and coast phase in school of fish for collective motion analysis[C]//Proceedings of SPIE 10225, Eighth International

    Kelley J L, Phillips B, Cummins G H, et al. Changes in the visual environment affect colour signal brightness and shoaling behaviour in a freshwater fish[J]. Animal Behaviour, 2012, 83(3): 783-791. doi: 10.1016/j.anbehav.2011.12.028

    Li D L, Hao Y F, Duan Y Q. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: A review[J]. Reviews in Aquaculture, 2020, 12(3): 1390-1411. doi: 10.1111/raq.12388

    Ohshimo S. Spatial distribution and biomass of pelagic fish in the East China Sea in summer, based on acoustic surveys from 1997 to 2001[J]. Fisheries Science, 2004, 70(3): 389-400. doi: 10.1111/j.1444-2906.2004.00818.x

    Rowell T J, Nemeth R S, Schärer M T, et al. Fish sound production and acoustic telemetry reveal behaviors and spatial patterns associated with spawning aggregations of two Caribbean groupers[J]. Marine Ecology Progress Series, 2015, 518: 239-254. doi: 10.3354/meps11060

    Handegard N O, Tenningen M, Howarth K, et al. Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia[J]. PLoS One, 2017, 12(12): e0190259. doi: 10.1371/journal.pone.0190259

    Jézéquel Y, Bonnel J, Coston-Guarini J, et al. Sound characterization of the European lobster Homarus gammarus in tanks[J]. Aquatic Biology, 2018, 27: 13-23. doi: 10.3354/ab00692

    Hassan S G, Ahmed S, Iqbal S, et al. Fish as a source of acoustic signal measurement in an aquaculture tank: Acoustic sensor based time frequency analysis[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3): 110-117. doi: 10.25165/j.ijabe.20191203.4238

    Yin L M, Chen X Z, Zhang X G, et al. Measurement and analysis of the aquaculture noise for Larimichthys crocea in the fiberglass fish tank[J]. Marine Fisheries, 2017, 39(3): 314-321 (in Chinese). doi: 10.3969/j.issn.1004-2490.2017.03.009

    Brown A, Garg S, Montgomery J. Automatic rain and cicada chorus filtering of bird acoustic data[J]. Applied Soft Computing, 2019, 81: 105501. doi: 10.1016/j.asoc.2019.105501

    Zuo Q, Tian Y C, Ma G Q. Research progress and problems of aquaculture intelligent feeding system[J]. Journal of Tianjin Agricultural University, 2020, 27(4): 73-77 (in Chinese). doi: 10.19640/j.cnki.jtau.2020.04.014

    Yuan K, Zhuang B L, Ni Q, et al. Design and experiments of automatic feeding system for indoor industrialization aquaculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 169-176 (in Chinese).

    Xiao H J, Liu K, Li L L, et al. Design of intelligent feeding car for multi-layer sink-type industrialized recirculating aquaculture system[J]. Fishery Modernization, 2019, 46(1): 21-26 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.01.004

    Liu Z Q, Liu S X, Li W, et al. Design and test on feeding gun for marine cage calture[J]. Fishery Modernization, 2015, 42(3): 38-42 (in Chinese). doi: 10.3969/j.issn.1007-9580.2015.03.008

    Oehme M, Aas T S, Sørensen M, et al. Feed pellet distribution in a sea cage using pneumatic feeding system with rotor spreader[J]. Aquacultural Engineering, 2012, 51: 44-52. doi: 10.1016/j.aquaeng.2012.07.001

    Zhao J, Zhu S M, Ye Z Y, et al. Assessing method for feeding activity of swimming fishes in RAS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 288-293 (in Chinese). doi: 10.6041/j.issn.1000-1298.2016.08.038

    Chen C W, Du Y G, Zhou C, et al. Evaluation of feeding activity of shoal based on image texture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 232-237 (in Chinese). doi: 10.11975/j.issn.1002-6819.2017.05.034

    Qiao F, Zheng D, Hu L Y, et al. Research on smart bait casting machine based on machine vision technology[J]. Chinese Journal of Engineering Design, 2015, 22(6): 528-533 (in Chinese). doi: 10.3785/j.issn.1006-754X.2015.06.003

    Guo J. Research on feeding patterns and bait technology of fish culture based on information of image and sound[D]. Ningbo: Ningbo University, 2018 (in Chinese).

    Zhao L, Song X F, Li X, et al. Design and simulation of roller fish grader[J]. Fishery Modernization, 2023, 50(4): 68-75 (in Chinese).

    Hong Y, Zhu Y, Jiang T, et al. Design and test of rotary live fish grading and counting device[J]. Fishery Modernization, 2019, 46(4): 49-54 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.04.008

    Ma X Y, Li M, Xiong W C, et al. Design of sea cucumber grading and counting equipment based on technology of image recognition[J]. Journal of Dalian Fisheries University, 2016, 24(6): 549-552 (in Chinese).

    Zhou X L, Ma C, Wang Z P, et al. Design and implementation of trait measurement system for common carp (Cyprinus carpio) and crucian carp (Carassius auratus) based on machine vision[J]. Fishery Modernization, 2022, 49(6): 108-117 (in Chinese). doi: 10.3969/j.issn.1007-9580.2022.06.014

    Li Y J, Huang K W, Xiang J. Measurement of dynamic fish dimension based on stereoscopic vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 220-226 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.21.026

    Liao Y H, Zhou C W, Liu W Z, et al. 3DPhenoFish: Application for two- and three-dimensional fish morphological phenotype extraction from point cloud analysis[J]. Zoological Research, 2021, 42(4): 492-502. doi: 10.24272/j.issn.2095-8137.2021.141

(1)

(3)

计量
  • 文章访问数:  1417
  • PDF下载数:  188
  • 施引文献:  0
出版历程
收稿日期:  2023-10-06
修回日期:  2023-11-03
录用日期:  2023-11-03
刊出日期:  2023-11-01

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发