-
摘要: 干扰素(interferon,IFN)是一类具有抗病毒、抗细菌和免疫调节等多种功能的细胞因子。根据其分子结构、受体、信号通路以及生物学功能等,脊椎动物IFNs被分为I型、II型、III型和IV型。鱼类属于低等脊椎动物,是脊椎动物中种类最多的一个类群,也是最早拥有完善且复杂IFN系统的脊椎动物,是研究IFN系统组成、功能和演化的重要对象。根据系统发育关系,鱼类I型IFNs被分成8个亚群,分别为IFNa – IFNf以及IFNh和IFNi。不同亚群可选择性利用不同的受体复合物,通过保守的JAK/STAT信号通路诱导干扰素诱导基因(interferon stimulated genes, ISGs)的表达,从而发挥抗病毒等功能。鱼类II型IFNs有2个成员,即IFN-γ和IFN-γrel,它们可分别利用CRFB13/CRFB6和CRFB17受体,通过STAT1传递信号。目前,在硬骨鱼类中还未鉴定到III型IFNs,但软骨鱼类中已鉴定到了III型IFNs及其受体亚基。IV型IFN是我国学者近期在鱼类和原始哺乳动物中鉴定到的一类新IFN基因,具有显著的抗病毒功能,受体由CRFB12和CRFB4组成。本文从基因结构、分类和命名、受体组成、信号传导以及生物学功能等方面总结了鱼类的I型、II型、III型和IV型IFNs的最新研究进展,重点介绍了我国学者在鱼类IFN系统的组成与命名、受体与信号传导、晶体结构、功能、新型IFN等方面所取得的研究成绩。本文不仅为今后鱼类IFN系统的研究提供了可能的方向,也能增强我们对鱼类IFN研究进展的系统性认识,同时也为IFN在鱼类抗病毒和抗细菌感染中的应用提供参考。
-
关键词:
- 鱼类 /
- 干扰素 /
- 干扰素受体 /
- JAK-STAT信号通路
Abstract: Interferons (IFNs) are a class of cytokines with pleiotropic immunological and biological functions, such as antiviral, antibacterial and immunomodulatory functions. In vertebrates, IFNs play pivotal roles in innate immune system, and can also coordinate effective adaptive immunity. Up to now, four types of IFNs, i.e., type I, type II, type III and type IV IFNs, have been reported in vertebrates. As a diversified lineage of vertebrates, fish represents the earliest group of vertebrates to possess well-defined and complicated IFN systems, and they are considered as important for the study of composition, function, and evolution of IFN systems. According to phylogenetic relationships, fish type I IFNs are classified into eight subgroups, namely IFNa − IFNf, IFNh and IFNi, which selectively use different receptor complexes to induce the production of interferon stimulated genes (ISGs) through the conserved JAK/STAT signaling pathway, thereby exerting their biological functions, such as antiviral and antibacterial activities. Two members of type II IFNs, IFN-γ and IFN-γrel exist in fish, and they can use CRFB13/CRFB6 and CRFB17 to transfer signaling through STAT1, respectively. Type III IFNs and their receptor subunits have been identified in cartilaginous fish, although not in teleost fish. Type IV IFN is a new IFN identified recently in fish and primitive mammals, which has a significant antiviral function with receptors consisting of CRFB12 and CRFB4. In this report, the current achievements of type I, type II, type III and type IV IFNs in fish were reviewed in respect to gene structure, classification and nomenclature, receptor composition and usage, signaling pathway, and immunological function. Contributions from Chinese scientists on fish IFN composition and nomenclature, receptor usage and signaling, crystal structure, functional specialty, and new IFN finding were summarized. The possible future direction was also proposed in relation with the research on fish IFN systems in this article. It is expected that this article will contribute to systematic understanding of fish IFN system, and may also provide information for potential application of IFNs in antiviral and antibacterial practice in aquaculture.-
Key words:
- fish /
- interferon /
- interferon receptor /
- JAK-STAT signaling pathway
-
表 1 I型IFNs在不同种类鱼类中的组成差异
Table 1. Composization of type I IFNs in different fish species
目
Order物种名
species nameIFNa IFNb IFNc IFNd IFNe IFNf IFNh IFNi 鲑形目
Salmoniformes虹鳟
Oncorhynchus mykiss√ √ √ √ √ √ × × 鲤形目
Cypriniformes斑马鱼
Danio rerio√ × √ √ × × × × 鲤
Cyprinus carpio√ × √ √ × × × × 翘嘴鲌
Culter alburnus√ × √ √ × × × × 鲈形目
Perciformes鳜
Siniperca chuatsi× × √ √ × × √ × 大黄鱼
Larimichthys crocea× × √ √ × × √ √ 大西洋白姑鱼
Argyrosomus regius× × √ √ × × √ × 鲽形目
Pleuronectiformes牙鲆
Paralichthys olivaceus× × √ √ × × √ × 大菱鲆
Scophthalmus maximus× × √ √ × × √ × 鲟形目
Acipenseriformes达氏鲟
Acipenser dabryanus× × × × √ × × × 中华鲟
Acipenser sinensis× × × × √ × × × 雀鳝目
Lepisosteiformes雀鳝
Lepidosteus platystomus× × × × √ × × × 注:“√”表示含有;“×”表示无。
Notes: “√” indicates present; “×” indicates absent. -
Li D Y, Wu M H. Pattern recognition receptors in health and diseases[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 291. doi: 10.1038/s41392-021-00687-0
Schoggins J W, Wilson S J, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response[J]. Nature, 2011, 472(7344): 481-485. doi: 10.1038/nature09907
Xiao X, Zhu W T, Zhang Y Q, et al. Broad-spectrum robust direct bactericidal activity of fish IFNφ1 reveals an antimicrobial peptide-like function for type I IFNs in vertebrates[J]. The Journal of Immunology, 2021, 206(6): 1337-1347. doi: 10.4049/jimmunol.2000680
Zhu W T, Zhang Y Q, Liao Z W, et al. IFN1 enhances thrombocyte phagocytosis through IFN receptor complex-JAK/STAT-complement C3.3-CR1 pathway and facilitates antibacterial immune regulation in teleost[J]. The Journal of Immunology, 2023, 210(8): 1043-1058. doi: 10.4049/jimmunol.2200787
Qiao X, Wang L L, Song L S. The primitive interferon-like system and its antiviral function in molluscs[J]. Developmental & Comparative Immunology, 2021, 118: 103997.
Chen S N, Gan Z, Hou J, et al. Identification and establishment of type IV interferon and the characterization of interferon-υ including its class II cytokine receptors IFN-υR1 and IL-10R2[J]. Nature Communications, 2022, 13(1): 999. doi: 10.1038/s41467-022-28645-6
Su J G. The discovery of type IV interferon system revolutionizes interferon family and opens up a new frontier in jawed vertebrate immune defense[J]. Science China Life Sciences, 2022, 65(11): 2335-2337. doi: 10.1007/s11427-022-2112-0
Pestka S, Krause C D, Walter M R. Interferons, interferon-like cytokines, and their receptors[J]. Immunological Reviews, 2004, 202(1): 8-32. doi: 10.1111/j.0105-2896.2004.00204.x
Redmond A K, Zou J, Secombes C J, et al. Discovery of all three types in cartilaginous fishes enables phylogenetic resolution of the origins and evolution of Interferons[J]. Frontiers in Immunology, 2019, 10: 1558. doi: 10.3389/fimmu.2019.01558
Schoggins J W, Rice C M. Interferon-stimulated genes and their antiviral effector functions[J]. Current Opinion in Virology, 2011, 1(6): 519-525. doi: 10.1016/j.coviro.2011.10.008
Lazear H M, Nice T J, Diamond M S. Interferon-λ: immune functions at barrier surfaces and beyond[J]. Immunity, 2015, 43(1): 15-28. doi: 10.1016/j.immuni.2015.07.001
Teijaro J R. Type I interferons in viral control and immune regulation[J]. Current Opinion in Virology, 2016, 16: 31-40. doi: 10.1016/j.coviro.2016.01.001
Schoenborn J R, Wilson C B. Regulation of interferon‐γ during innate and adaptive immune responses[J]. Advances in Immunology, 2007, 96: 41-101.
Chen S N, Li B, Gan Z, et al. Transcriptional regulation and signaling of type IV IFN with identification of the ISG repertoire in an amphibian model, Xenopus laevis[J]. The Journal of Immunology, 2023, 210(11): 1771-1789. doi: 10.4049/jimmunol.2300085
Chen L, Liu J, Yan J, et al. Cloning and characterization of type IV interferon from black carp Mylopharyngodon piceus[J]. Developmental & Comparative Immunology, 2023, 140: 104614.
Isaacs A, Lindenmann J. Virus interference. I. The interferon[J]. Proceedings of the Royal Society B:Biological Sciences, 1957, 147(927): 258-267.
Pestka S. The interferons: 50 years after their discovery, there is much more to learn[J]. Journal of Biological Chemistry, 2007, 282(28): 20047-20051. doi: 10.1074/jbc.R700004200
Detournay O, Morrison D A, Wagner B, et al. Genomic analysis and mRNA expression of equine type I interferon genes[J]. Journal of Interferon & Cytokine Research, 2013, 33(12): 746-759.
Sen G C. Viruses and interferons[J]. Annual Review of Microbiology, 2001, 55: 255-281. doi: 10.1146/annurev.micro.55.1.255
Haller O, Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity[J]. Traffic, 2002, 3(10): 710-717. doi: 10.1034/j.1600-0854.2002.31003.x
Stark G R, Kerr I M, Williams B R G, et al. How cells respond to interferons[J]. Annual Review of Biochemistry, 1998, 67: 227-264. doi: 10.1146/annurev.biochem.67.1.227
Biron C A, Nguyen K B, Pien G C, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines[J]. Annual Review of Immunology, 1999, 17: 189-220. doi: 10.1146/annurev.immunol.17.1.189
Altmann S M, Mellon M T, Distel D L, et al. Molecular and functional analysis of an interferon gene from the zebrafish, Danio rerio[J]. Journal of Virology, 2003, 77(3): 1992-2002. doi: 10.1128/JVI.77.3.1992-2002.2003
Robertsen B, Bergan V, Røkenes T, et al. Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity[J]. Journal of Interferon & Cytokine Research, 2003, 23(10): 601-612.
Lutfalla G, Crollius H R, Stange-Thomann N, et al. Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: the class II cytokine receptors and their ligands in mammals and fish[J]. BMC Genomics, 2003, 4(1): 29. doi: 10.1186/1471-2164-4-29
Li B, Chen S N, Ren L, et al. Identification of type I IFNs and their receptors in a cyprinid fish, the topmouth culter Culter alburnus[J]. Fish & Shellfish Immunology, 2020, 102: 326-335.
Chang M X, Nie P, Collet B, et al. Identification of an additional two-cysteine containing type I interferon in rainbow trout Oncorhynchus mykiss provides evidence of a major gene duplication event within this gene family in teleosts[J]. Immunogenetics, 2009, 61(4): 315-325. doi: 10.1007/s00251-009-0366-y
Gan Z, Chen S N, Huang B, et al. Fish type I and type II interferons: composition, receptor usage, production and function[J]. Reviews in Aquaculture, 2020, 12(2): 773-804. doi: 10.1111/raq.12349
Li D M, Tan W L, Ma M S, et al. Molecular characterization and transcription regulation analysis of type I IFN gene in grass carp (Ctenopharyngodon idella)[J]. Gene, 2012, 504(1): 31-40. doi: 10.1016/j.gene.2012.04.091
Xia S Y, Wang H, Hong X P, et al. Identification and characterization of a type I interferon induced by cyprinid herpesvirus 2 infection in crucian carp Carassius auratus gibelio[J]. Fish & Shellfish Immunology, 2018, 76: 35-40.
Huang Z L, Chen S, Liu J C, et al. IFNa of black carp is an antiviral cytokine modified with N-linked glycosylation[J]. Fish & Shellfish Immunology, 2015, 46(2): 477-485.
Wu H, Liu L Q, Wu S Z, et al. IFNb of black carp functions importantly in host innate immune response as an antiviral cytokine[J]. Fish & Shellfish Immunology, 2018, 74: 1-9.
Laghari Z A, Chen S N, Li L, et al. Functional, signalling and transcriptional differences of three distinct type I IFNs in a perciform fish, the mandarin fish Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2018, 84: 94-108.
Liu L H, Nie P, Wang S, et al. Identification of type I and type II IFNs in a perciform fish, the snakehead Channa argus[J]. Aquaculture Reports, 2021, 20: 100749. doi: 10.1016/j.aqrep.2021.100749
Ding Y, Ao J Q, Huang X H, et al. Identification of two subgroups of type I IFNs in perciforme fish large yellow croaker Larimichthys crocea provides novel insights into function and regulation of fish type I IFNs[J]. Frontiers in Immunology, 2016, 7: 343.
Chen J J, Guan Y Y, Guan H X, et al. Molecular and structural basis of receptor binding and signaling of a fish type I IFN with three disulfide bonds[J]. The Journal of Immunology, 2022, 209(4): 806-819. doi: 10.4049/jimmunol.2200202
Zou J, Secombes C J. Teleost fish interferons and their role in immunity[J]. Developmental & Comparative Immunology, 2011, 35(12): 1376-1387.
Boudinot P, Langevin C, Secombes C J, et al. The peculiar characteristics of fish type I interferons[J]. Viruses, 2016, 8(11): 298. doi: 10.3390/v8110298
Qi Z T, Nie P, Secombes C J, et al. Intron-containing type I and type III IFN coexist in amphibians: refuting the concept that a retroposition event gave rise to type I IFNs[J]. The Journal of Immunology, 2010, 184(9): 5038-5046. doi: 10.4049/jimmunol.0903374
Gan Z, Yang Y C, Chen S N, et al. Unique composition of intronless and intron-containing type I IFNs in the tibetan frog Nanorana parkeri provides new evidence to support independent retroposition hypothesis for type I IFN genes in amphibians[J]. The Journal of Immunology, 2018, 201(11): 3329-3342. doi: 10.4049/jimmunol.1800553
Gan Z, Chen S N, Huang B, et al. Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: insights into the origin and evolution of type I IFNs in vertebrates[J]. Developmental & Comparative Immunology, 2017, 67: 166-176.
Bergan V, Steinsvik S, Xu H, et al. Promoters of type I interferon genes from Atlantic salmon contain two main regulatory regions[J]. FEBS Journal, 2006, 273(17): 3893-3906. doi: 10.1111/j.1742-4658.2006.05382.x
Purcell M K, Laing K J, Woodson J C, et al. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes[J]. Fish & Shellfish Immunology, 2009, 26(2): 293-304.
Long S, Wilson M, Bengten E, et al. Identification of a cDNA encoding channel catfish interferon[J]. Developmental & Comparative Immunology, 2004, 28(2): 97-111.
Long S, Milev-Milovanovic I, Wilson M, et al. Identification and expression analysis of cDNAs encoding channel catfish type I interferons[J]. Fish & Shellfish Immunology, 2006, 21(1): 42-59.
Chang M X, Zou J, Nie P, et al. Intracellular interferons in fish: a unique means to combat viral infection[J]. PLoS Pathogens, 2013, 9(11): e1003736. doi: 10.1371/journal.ppat.1003736
Levraud J P, Boudinot P, Colin I, et al. Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system[J]. The Journal of Immunology, 2007, 178(7): 4385-4394. doi: 10.4049/jimmunol.178.7.4385
Zou J, Tafalla C, Truckle J, et al. Identification of a second group of type I IFNs in fish sheds light on IFN evolution in vertebrates[J]. The Journal of Immunology, 2007, 179(6): 3859-3871. doi: 10.4049/jimmunol.179.6.3859
Ding Y, Guan Y Y, Huang X H, et al. Characterization and function of a group II type I interferon in the perciform fish, large yellow croaker (Larimichthys crocea)[J]. Fish & Shellfish Immunology, 2019, 86: 152-159.
Liu F G, Bols N C, Pham P H, et al. Evolution of IFN subgroups in bony fish - 1: Group I-III IFN exist in early ray-finned fish, with group II IFN subgroups present in the Holostean spotted gar, Lepisosteus oculatus[J]. Fish & Shellfish Immunology, 2019, 95: 163-170.
Liu F G, Wang T H, Petit J, et al. Evolution of IFN subgroups in bony fish - 2. Analysis of subgroup appearance and expansion in teleost fish with a focus on salmonids[J]. Fish & Shellfish Immunology, 2020, 98: 564-573.
Zou J, Gorgoglione B, Taylor N G, et al. Salmonids have an extraordinary complex type I IFN system: characterization of the IFN locus in rainbow trout Oncorhynchus mykiss reveals two novel IFN subgroups[J]. The Journal of Immunology, 2014, 193(5): 2273-2286. doi: 10.4049/jimmunol.1301796
Milne D J, Campoverde C, Andree K B, et al. The discovery and comparative expression analysis of three distinct type I interferons in the perciform fish, meagre (Argyrosomus regius)[J]. Developmental & Comparative Immunology, 2018, 84: 123-132.
Hu Y W, Yoshikawa T, Chung S, et al. Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus[J]. Fish & Shellfish Immunology, 2017, 67: 7-10.
Pereiro P, Costa M M, Díaz-Rosales P, et al. The first characterization of two type I interferons in turbot (Scophthalmus maximus) reveals their differential role, expression pattern and gene induction[J]. Developmental & Comparative Immunology, 2014, 45(2): 233-244.
Xu Q Q, Luo K, Zhang S H, et al. Sequence analysis and characterization of type I interferon and type II interferon from the critically endangered sturgeon species, A. dabryanus and A. sinensis[J]. Fish & Shellfish Immunology, 2019, 84: 390-403.
Aggad D, Stein C, Sieger D, et al. In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish[J]. The Journal of Immunology, 2010, 185(11): 6774-6782. doi: 10.4049/jimmunol.1000549
Deng Y H, Li B, Chen S N, et al. Molecular characterization of nineteen cytokine receptor family B (CRFB) members, CRFB1, CRFB2, CRFB4-17, with three CRFB9 and two CRFB14 in a cyprinid fish, the blunt snout bream Megalobrama amblycephala[J]. Developmental & Comparative Immunology, 2023, 145: 104725.
Sun B J, Greiner-Tollersrud L, Koop B F, et al. Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals[J]. Developmental & Comparative Immunology, 2014, 47(2): 275-286.
Aggad D, Mazel M, Boudinot P, et al. The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains[J]. The Journal of Immunology, 2009, 183(6): 3924-3931. doi: 10.4049/jimmunol.0901495
Gan Z, Cheng J, Chen S N, et al. Identification and characterization of tilapia CRFB1, CRFB2 and CRFB5 reveals preferential receptor usage of three IFN subtypes in perciform fishes[J]. Fish & Shellfish Immunology, 2020, 107: 194-201.
Chen H R, Liu W Q, Wang B H, et al. Cloning, identification of the two cytokine receptor family B subunits CRFB1 and CRFB5 from grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2015, 45(2): 211-220.
Xu Q Q, Deng D, Guo H Z, et al. Comprehensive comparison of thirteen kinds of cytokine receptors from the endangered fish Chinese sturgeon (Acipenser sinensis)[J]. Developmental & Comparative Immunology, 2021, 123: 104132.
Wang Z X, Xu J, Feng J H, et al. Structural and functional analyses of type I IFNa shed light into its interaction with multiple receptors in fish[J]. Frontiers in Immunology, 2022, 13: 862764. doi: 10.3389/fimmu.2022.862764
Wang S, Chen S N, Sun Z, et al. Four type I IFNs, IFNa1, IFNa2, IFNb, IFNc, and their receptor usage in an osteoglossomorph fish, the Asian arowana, Scleropages formosus[J]. Fish & Shellfish Immunology, 2021, 117: 70-81.
Guo C J, Zhang Y F, Yang L S, et al. The JAK and STAT family members of the mandarin fish Siniperca chuatsi: molecular cloning, tissues distribution and immunobiological activity[J]. Fish & Shellfish Immunology, 2009, 27(2): 349-359.
Stein C, Caccamo M, Laird G, et al. Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish[J]. Genome Biology, 2007, 8(11): R251. doi: 10.1186/gb-2007-8-11-r251
Ruan B Y, Chen S N, Hou J, et al. Two type II IFN members, IFN-γ and IFN-γ related (rel), regulate differentially IRF1 and IRF11 in zebrafish[J]. Fish & Shellfish Immunology, 2017, 65: 103-110.
Wu H, Zhang Y Y, Lu X Y, et al. STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV[J]. Fish & Shellfish Immunology, 2019, 87: 386-394.
Qin Y H, Liu H X, Zhang P P, et al. Molecular cloning, expression and functional analysis of STAT2 in orange-spotted grouper, Epinephelus coioides[J]. Fish & Shellfish Immunology, 2022, 131: 1245-1254.
Sobhkhez M, Skjesol A, Thomassen E, et al. Structural and functional characterization of salmon STAT1, STAT2 and IRF9 homologs sheds light on interferon signaling in teleosts[J]. FEBS Open Bio, 2014, 4(1): 858-871. doi: 10.1016/j.fob.2014.09.007
Xu C, Evensen Ø, Munang'andu H M. De novo assembly and transcriptome analysis of Atlantic salmon macrophage/dendritic-like TO cells following type I IFN treatment and salmonid alphavirus subtype-3 infection[J]. BMC Genomics, 2015, 16(1): 96. doi: 10.1186/s12864-015-1302-1
Larsen R, Røkenes T P, Robertsen B. Inhibition of infectious pancreatic necrosis virus replication by atlantic salmon Mx1 protein[J]. Journal of Virology, 2004, 78(15): 7938-7944. doi: 10.1128/JVI.78.15.7938-7944.2004
Liu T K, Zhang Y B, Liu Y, et al. Cooperative roles of fish protein kinase containing Z-DNA binding domains and double-stranded RNA-dependent protein kinase in interferon-mediated antiviral response[J]. Journal of Virology, 2011, 85(23): 12769-12780. doi: 10.1128/JVI.05849-11
Liu W, Xiang Y X, Zhang W W, et al. Expression pattern, antiviral role and regulation analysis of interferon-stimulated gene 15 in black seabream, Acanthopagrus schlegelii[J]. Fish & Shellfish Immunology, 2018, 82: 60-67.
Wang B, Zhang Y B, Liu T K, et al. Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway[J]. Developmental & Comparative Immunology, 2014, 47(1): 140-149.
Xu C, Guo T C, Mutoloki S, et al. Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro[J]. Journal of Virology, 2010, 84(17): 8903-8912. doi: 10.1128/JVI.00851-10
Svingerud T, Solstad T, Sun B J, et al. Atlantic salmon type I IFN subtypes show differences in antiviral activity and cell-dependent expression: evidence for high IFNb/IFNc-producing cells in fish lymphoid tissues[J]. The Journal of Immunology, 2012, 189(12): 5912-5923. doi: 10.4049/jimmunol.1201188
López-Muñoz A, Roca F J, Meseguer J, et al. New insights into the evolution of IFNs: zebrafish group II IFNs induce a rapid and transient expression of IFN-dependent genes and display powerful antiviral activities[J]. The Journal of Immunology, 2009, 182(6): 3440-3449. doi: 10.4049/jimmunol.0802528
Wang L, Wang L, Zhang H X, et al. In vitro effects of recombinant zebrafish IFN on spring viremia of carp virus and infectious hematopoietic necrosis virus[J]. Journal of Interferon & Cytokine Research, 2006, 26(4): 256-259.
Chang C J, Jenssen I, Robertsen B. Protection of Atlantic salmon against salmonid alphavirus infection by type I interferons IFNa, IFNb and IFNc[J]. Fish & Shellfish Immunology, 2016, 57: 35-40.
Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon[J]. Developmental & Comparative Immunology, 2018, 80: 41-52.
Ding Y, Guan Y Y, Ao J Q, et al. Induction of type I interferons in response to bacterial stimuli in large yellow croaker Larimichthys crocea[J]. Fish & Shellfish Immunology, 2017, 62: 349-355.
Li Z S, Xu X P, Huang L C, et al. Administration of recombinant IFN1 protects zebrafish (Danio rerio) from ISKNV infection[J]. Fish & Shellfish Immunology, 2010, 29(3): 399-406.
Li D M, Lin G, Yu X J, et al. Immunoprotection of grass carp (Ctenopharyngodon idella) with recombinant interferon (rCiIFN) against GCHV infection[J]. Aquaculture, 2013, 388-391: 42-48. doi: 10.1016/j.aquaculture.2013.01.017
Yan J, Peng L Z, Li Y, et al. IFNa of triploid hybrid of gold fish and allotetraploid is an antiviral cytokine against SVCV and GCRV[J]. Fish & Shellfish Immunology, 2016, 54: 529-536.
Zhou Y Z, Jiang N, Fan Y D, et al. Identification, expression profiles and antiviral activities of a type I IFN from gibel carp Carassius auratus gibelio[J]. Fish & Shellfish Immunology, 2019, 91: 78-86.
Kuo H P, Chung C L, Hung Y F, et al. Comparison of the responses of different recombinant fish type I interferons against betanodavirus infection in grouper[J]. Fish & Shellfish Immunology, 2016, 49: 143-153.
Boxx G M, Cheng G H. The roles of Type I interferon in bacterial infection[J]. Cell Host & Microbe, 2016, 19(6): 760-769.
Secombes C J, Zou J. Evolution of interferons and interferon receptors[J]. Frontiers in Immunology, 2017, 8: 209.
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: an update[J]. Fish & Shellfish Immunology, 2019, 90: 150-164.
Chinchar V G, Logue O, Antao A, et al. Channel catfish reovirus (CRV) inhibits replication of channel catfish herpesvirus (CCV) by two distinct mechanisms: viral interference and induction of an anti-viral factor[J]. Diseases of Aquatic Organisms, 1998, 33(2): 77-85.
Zou J, Yoshiura Y, Dijkstra J M, et al. Identification of an interferon gamma homologue in Fugu, Takifugu rubripes[J]. Fish & Shellfish Immunology, 2004, 17(4): 403-409.
Liang Y, Zhu K C, You Y Z, et al. Molecular characterization of TNF-β and IFN-γ in yellowfin seabream (Acanthopagrus latus, Hottuyn, 1782) and their immune responses to density stress during transport[J]. Developmental & Comparative Immunology, 2023, 147: 104747.
Li L, Chen S N, Laghari Z A, et al. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2019, 97: 98-112.
Zou J, Carrington A, Collet B, et al. Identification and bioactivities of IFN-γ in rainbow trout Oncorhynchus mykiss: the first Th1-type cytokine characterized functionally in fish[J]. The Journal of Immunology, 2005, 175(4): 2484-2494. doi: 10.4049/jimmunol.175.4.2484
Milev-Milovanovic I, Long S, Wilson M, et al. Identification and expression analysis of interferon gamma genes in channel catfish[J]. Immunogenetics, 2006, 58(1): 70-80. doi: 10.1007/s00251-006-0081-x
Stolte E H, Savelkoul H F J, Wiegertjes G, et al. Differential expression of two interferon-γ genes in common carp (Cyprinus carpio L. )[J]. Developmental & Comparative Immunology, 2008, 32(12): 1467-1481.
Furnes C, Seppola M, Robertsen B. Molecular characterisation and expression analysis of interferon gamma in Atlantic cod (Gadus morhua)[J]. Fish & Shellfish Immunology, 2009, 26(2): 285-292.
Grayfer L, Belosevic M. Molecular characterization, expression and functional analysis of goldfish (Carassius aurutus L. ) interferon gamma[J]. Developmental & Comparative Immunology, 2009, 33(2): 235-246.
Sun B J, Skjaeveland I, Svingerud T, et al. Antiviral activity of salmonid gamma interferon against infectious pancreatic necrosis virus and salmonid alphavirus and its dependency on type I interferon[J]. Journal of Virology, 2011, 85(17): 9188-9198. doi: 10.1128/JVI.00319-11
Yang S S, Li Q H, Mu Y N, et al. Functional activities of interferon gamma in large yellow croaker Larimichthys crocea[J]. Fish & Shellfish Immunology, 2017, 70: 545-552.
Wang H X, Guo M, Tang X Q, et al. Immune adjuvant effects of interferon-gamma (IFN-γ) of flounder (Paralichthys olivaceus) against Edwardsiella tarda[J]. Developmental & Comparative Immunology, 2021, 123: 104159.
Chen R N, Su Y Q, Wang J, et al. Molecular characterization and expression analysis of interferon-gamma in the large yellow croaker Larimichthys crocea[J]. Fish & Shellfish Immunology, 2015, 46(2): 596-602.
Chen W Q, Xu Q Q, Chang M X, et al. Molecular characterization and expression analysis of the IFN-gamma related gene (IFN-γrel) in grass carp Ctenopharyngodon idella[J]. Veterinary Immunology and Immunopathology, 2010, 134(3-4): 199-207.
Yabu T, Toda H, Shibasaki Y, et al. Antiviral protection mechanisms mediated by ginbuna crucian carp interferon gamma isoforms 1 and 2 through two distinct interferon gamma-receptors[J]. The Journal of Biochemistry, 2011, 150(6): 635-648. doi: 10.1093/jb/mvr108
Shibasaki Y, Yabu T, Araki K, et al. Peculiar monomeric interferon gammas, IFNγrel 1 and IFNγrel 2, in ginbuna crucian carp[J]. FEBS Journal, 2014, 281(4): 1046-1056. doi: 10.1111/febs.12666
Pang A N, Chen S N, Gan Z, et al. Identification of type II interferons and receptors in an osteoglossiform fish, the arapaima Arapaima gigas[J]. Developmental & Comparative Immunology, 2022, 139: 104589.
Schroder K, Hertzog P J, Ravasi T, et al. Interferon-γ: an overview of signals, mechanisms and functions[J]. Journal of Leukocyte Biology, 2004, 75(2): 163-189. doi: 10.1189/jlb.0603252
Grayfer L, Belosevic M. Molecular characterization of novel interferon gamma receptor 1 isoforms in zebrafish (Danio rerio) and goldfish (Carassius auratus L. )[J]. Molecular Immunology, 2009, 46(15): 3050-3059. doi: 10.1016/j.molimm.2009.06.004
Zahradník J, Kolářová L, Pařízková H, et al. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function[J]. Fish & Shellfish Immunology, 2018, 79: 140-152.
Gao Q, Nie P, Thompson K D, et al. The search for the IFN-γ receptor in fish: functional and expression analysis of putative binding and signalling chains in rainbow trout Oncorhynchus mykiss[J]. Developmental & Comparative Immunology, 2009, 33(8): 920-931.
Zhu X Z, Wang J Y, Jia Z, et al. Novel dimeric architecture of an IFN-γ-related cytokine provides insights into subfunctionalization of type II IFNs in teleost fish[J]. The Journal of Immunology, 2022, 209(11): 2203-2214. doi: 10.4049/jimmunol.2200334
Shibasaki Y, Hatanaka C, Matsuura Y, et al. Effects of IFNγ administration on allograft rejection in ginbuna crucian carp[J]. Developmental & Comparative Immunology, 2016, 62: 108-115.
Peng W, Sun Y, Li G F, et al. Two distinct interferon-γ in the orange-spotted grouper (Epinephelus coioides): molecular cloning, functional characterization, and regulation in toll-like receptor pathway by induction of miR-146a[J]. Frontiers in Endocrinology, 2018, 9: 41. doi: 10.3389/fendo.2018.00041
Grayfer L, Garcia E G, Belosevic M. Comparison of macrophage antimicrobial responses induced by type II interferons of the goldfish (Carassius auratus L. )[J]. Journal of Biological Chemistry, 2010, 285(31): 23537-23547. doi: 10.1074/jbc.M109.096925
Zhang W X, Zhao Z J, Zhou J C, et al. Carboxymethyl chitosan nanoparticles loaded with Ctenopharyngodon idella interferon-γ2 (CiIFN-γ2) enhance protective efficacy against bacterial infection in grass carp[J]. Aquaculture, 2023, 572: 739554. doi: 10.1016/j.aquaculture.2023.739554
Yin L C, Lv M Y, Qiu X Y, et al. IFN-γ manipulates NOD1-mediated interaction of autophagy and Edwardsiella piscicida to augment intracellular clearance in Fish[J]. The Journal of Immunology, 2021, 207(4): 1087-1098. doi: 10.4049/jimmunol.2100151
Li L, Chen S N, Laghari Z A, et al. Myxovirus resistance (Mx) gene and its differential expression regulated by three type I and two type II IFNs in mandarin fish, Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2020, 105: 103604.
Li L, Chen S N, Li N, et al. Transcriptional and subcellular characterization of interferon induced protein-35 (IFP35) in mandarin fish, Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2021, 115: 103877.
Li L, Chen S N, Li N, et al. Molecular characterization and transcriptional conservation of N-myc-interactor, Nmi, by type I and type II IFNs in mandarin fish Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2022, 130: 104354.
Lu X B, Zeng J W, Jia K T, et al. Antiviral activities of sea perch type I and type II IFNs against RGNNV and their different roles in antigen presentation[J]. Aquaculture, 2021, 534: 736314. doi: 10.1016/j.aquaculture.2020.736314
Nayak S K, Shibasaki Y, Nakanishi T. Immune responses to live and inactivated Nocardia seriolae and protective effect of recombinant interferon gamma (rIFN γ) against nocardiosis in ginbuna crucian carp, Carassius auratus langsdorfii[J]. Fish & Shellfish Immunology, 2014, 39(2): 354-364.
Hou J, Chen S N, Gan Z, et al. In primitive zebrafish, MHC class II expression is regulated by IFN-γ, IRF1, and two forms of CIITA[J]. The Journal of Immunology, 2020, 204(9): 2401-2415. doi: 10.4049/jimmunol.1801480
Cao Y S, Zhang Q Y, Xu L M, et al. Effects of different cytokines on immune responses of rainbow trout in a virus DNA vaccination model[J]. Oncotarget, 2017, 8(68): 112222-112235. doi: 10.18632/oncotarget.23095
Ai K T, Li K, Jiao X Y, et al. IL-2-mTORC1 signaling coordinates the STAT1/T-bet axis to ensure Th1 cell differentiation and anti-bacterial immune response in fish[J]. PLoS Pathogens, 2022, 18(10): e1010913. doi: 10.1371/journal.ppat.1010913
Peng W, Lu D Q, Li G F, et al. Two distinct interferon-γ genes in Tetraodon nigroviridis: functional analysis during Vibrio parahaemolyticus infection[J]. Molecular Immunology, 2016, 70: 34-46. doi: 10.1016/j.molimm.2015.12.004
Arts J A J, Tijhaar E J, Chadzinska M, et al. Functional analysis of carp interferon-γ: evolutionary conservation of classical phagocyte activation[J]. Fish & Shellfish Immunology, 2010, 29(5): 793-802.
Zhang M, Liu W Q, Wang Y, et al. Identification, expression pattern and functional characterization of IFN-γ involved in activating JAK-STAT pathway in Sebastes schlegeli[J]. Fish & Shellfish Immunology, 2023: 108936.
Wang D, Fang L R, Zhao F W, et al. Molecular cloning, expression and antiviral activity of porcine interleukin-29 (poIL-29)[J]. Developmental & Comparative Immunology, 2011, 35(3): 378-384.
Yao Q X, Fischer K P, Arnesen K, et al. Molecular cloning, expression and characterization of Pekin duck interferon-λ[J]. Gene, 2014, 548(1): 29-38. doi: 10.1016/j.gene.2014.06.066
Chen S N, Zhang X W, Li L, et al. Evolution of IFN-λ in tetrapod vertebrates and its functional characterization in green anole lizard (Anolis carolinensis)[J]. Developmental & Comparative Immunology, 2016, 61: 208-224.
Fox B A, Sheppard P O, O'hara P J. The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family[J]. PLoS One, 2009, 4(3): e4933. doi: 10.1371/journal.pone.0004933
Onoguchi K, Yoneyama M, Takemura A, et al. Viral infections activate types I and III interferon genes through a common mechanism[J]. Journal of Biological Chemistry, 2007, 282(10): 7576-7581. doi: 10.1074/jbc.M608618200
Miknis Z J, Magracheva E, Li W, et al. Crystal structure of human interferon-λ1 in complex with its high-affinity receptor interferon-λR1[J]. Journal of Molecular Biology, 2010, 404(4): 650-664. doi: 10.1016/j.jmb.2010.09.068
Kotenko S V. IFN-λs[J]. Current Opinion in Immunology, 2011, 23(5): 583-590. doi: 10.1016/j.coi.2011.07.007
Coccia E M, Severa M, Giacomini E, et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocyte-derived dendritic cells[J]. European Journal of Immunology, 2004, 34(3): 796-805. doi: 10.1002/eji.200324610
Robertsen B. The interferon system of teleost fish[J]. Fish & Shellfish Immunology, 2006, 20(2): 172-191.
Hamming O J, Lutfalla G, Levraud J P, et al. Crystal structure of zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates[J]. Journal of Virology, 2011, 85(16): 8181-8187. doi: 10.1128/JVI.00521-11