• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-0615

主管 中国科学技术协会

主办 中国水产学会

鱼类的干扰素系统:研究进展与我国学者的贡献

李丽 邹钧 苏建国 刘兰浩 张珊 聂品

上一篇

下一篇

李丽, 邹钧, 苏建国, 刘兰浩, 张珊, 聂品. 2023. 鱼类的干扰素系统:研究进展与我国学者的贡献. 水产学报, 47(11): 119413. doi: 10.11964/jfc.20230814125
引用本文: 李丽, 邹钧, 苏建国, 刘兰浩, 张珊, 聂品. 2023. 鱼类的干扰素系统:研究进展与我国学者的贡献. 水产学报, 47(11): 119413. doi: 10.11964/jfc.20230814125
Li LI, Jun ZOU, Jianguo SU, Lanhao LIU, Shan ZHANG, Pin NIE. 2023. Interferon (IFN) system in fish: research progress and contributions from China. Journal of Fisheries of China, 47(11): 119413. doi: 10.11964/jfc.20230814125
Citation: Li LI, Jun ZOU, Jianguo SU, Lanhao LIU, Shan ZHANG, Pin NIE. 2023. Interferon (IFN) system in fish: research progress and contributions from China. Journal of Fisheries of China, 47(11): 119413. doi: 10.11964/jfc.20230814125

鱼类的干扰素系统:研究进展与我国学者的贡献

  • 基金项目:

    国家自然科学基金(32102835)

详细信息
    作者简介:

    李丽 (照片),从事鱼类与比较免疫学研究,E-mail:lili2013@ihb.ac.cn

    通讯作者: 聂品,从事鱼类与比较免疫学研究,E-mail:pinnie@qau.edu.cn

Interferon (IFN) system in fish: research progress and contributions from China

  • Fund Project: 国家自然科学基金(32102835)
More Information
  • 干扰素(interferon,IFN)是一类具有抗病毒、抗细菌和免疫调节等多种功能的细胞因子。根据其分子结构、受体、信号通路以及生物学功能等,脊椎动物IFNs被分为I型、II型、III型和IV型。鱼类属于低等脊椎动物,是脊椎动物中种类最多的一个类群,也是最早拥有完善且复杂IFN系统的脊椎动物,是研究IFN系统组成、功能和演化的重要对象。根据系统发育关系,鱼类I型IFNs被分成8个亚群,分别为IFNa – IFNf以及IFNh和IFNi。不同亚群可选择性利用不同的受体复合物,通过保守的JAK/STAT信号通路诱导干扰素诱导基因(interferon stimulated genes, ISGs)的表达,从而发挥抗病毒等功能。鱼类II型IFNs有2个成员,即IFN-γ和IFN-γrel,它们可分别利用CRFB13/CRFB6和CRFB17受体,通过STAT1传递信号。目前,在硬骨鱼类中还未鉴定到III型IFNs,但软骨鱼类中已鉴定到了III型IFNs及其受体亚基。IV型IFN是我国学者近期在鱼类和原始哺乳动物中鉴定到的一类新IFN基因,具有显著的抗病毒功能,受体由CRFB12和CRFB4组成。本文从基因结构、分类和命名、受体组成、信号传导以及生物学功能等方面总结了鱼类的I型、II型、III型和IV型IFNs的最新研究进展,重点介绍了我国学者在鱼类IFN系统的组成与命名、受体与信号传导、晶体结构、功能、新型IFN等方面所取得的研究成绩。本文不仅为今后鱼类IFN系统的研究提供了可能的方向,也能增强我们对鱼类IFN研究进展的系统性认识,同时也为IFN在鱼类抗病毒和抗细菌感染中的应用提供参考。
  • 加载中
  • 表 1  I型IFNs在不同种类鱼类中的组成差异

    Table 1.  Composization of type I IFNs in different fish species


    Order
    物种名
    species name
    IFNaIFNbIFNcIFNdIFNeIFNfIFNhIFNi
    鲑形目
    Salmoniformes
    虹鳟
    Oncorhynchus mykiss
    × ×
    鲤形目
    Cypriniformes
    斑马鱼
    Danio rerio
    × × × × ×

    Cyprinus carpio
    × × × × ×
    翘嘴鲌
    Culter alburnus
    × × × × ×
    鲈形目
    Perciformes

    Siniperca chuatsi
    × × × × ×
    大黄鱼
    Larimichthys crocea
    × × × ×
    大西洋白姑鱼
    Argyrosomus regius
    × × × × ×
    鲽形目
    Pleuronectiformes
    牙鲆
    Paralichthys olivaceus
    × × × × ×
    大菱鲆
    Scophthalmus maximus
    × × × × ×
    鲟形目
    Acipenseriformes
    达氏鲟
    Acipenser dabryanus
    × × × × × × ×
    中华鲟
    Acipenser sinensis
    × × × × × × ×
    雀鳝目
    Lepisosteiformes
    雀鳝
    Lepidosteus platystomus
    × × × × × × ×
    注:“√”表示含有;“×”表示无。
    Notes: “√” indicates present; “×” indicates absent.
    下载: 导出CSV
  • Li D Y, Wu M H. Pattern recognition receptors in health and diseases[J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 291. doi: 10.1038/s41392-021-00687-0

    Schoggins J W, Wilson S J, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response[J]. Nature, 2011, 472(7344): 481-485. doi: 10.1038/nature09907

    Xiao X, Zhu W T, Zhang Y Q, et al. Broad-spectrum robust direct bactericidal activity of fish IFNφ1 reveals an antimicrobial peptide-like function for type I IFNs in vertebrates[J]. The Journal of Immunology, 2021, 206(6): 1337-1347. doi: 10.4049/jimmunol.2000680

    Zhu W T, Zhang Y Q, Liao Z W, et al. IFN1 enhances thrombocyte phagocytosis through IFN receptor complex-JAK/STAT-complement C3.3-CR1 pathway and facilitates antibacterial immune regulation in teleost[J]. The Journal of Immunology, 2023, 210(8): 1043-1058. doi: 10.4049/jimmunol.2200787

    Qiao X, Wang L L, Song L S. The primitive interferon-like system and its antiviral function in molluscs[J]. Developmental & Comparative Immunology, 2021, 118: 103997.

    Chen S N, Gan Z, Hou J, et al. Identification and establishment of type IV interferon and the characterization of interferon-υ including its class II cytokine receptors IFN-υR1 and IL-10R2[J]. Nature Communications, 2022, 13(1): 999. doi: 10.1038/s41467-022-28645-6

    Su J G. The discovery of type IV interferon system revolutionizes interferon family and opens up a new frontier in jawed vertebrate immune defense[J]. Science China Life Sciences, 2022, 65(11): 2335-2337. doi: 10.1007/s11427-022-2112-0

    Pestka S, Krause C D, Walter M R. Interferons, interferon-like cytokines, and their receptors[J]. Immunological Reviews, 2004, 202(1): 8-32. doi: 10.1111/j.0105-2896.2004.00204.x

    Redmond A K, Zou J, Secombes C J, et al. Discovery of all three types in cartilaginous fishes enables phylogenetic resolution of the origins and evolution of Interferons[J]. Frontiers in Immunology, 2019, 10: 1558. doi: 10.3389/fimmu.2019.01558

    Schoggins J W, Rice C M. Interferon-stimulated genes and their antiviral effector functions[J]. Current Opinion in Virology, 2011, 1(6): 519-525. doi: 10.1016/j.coviro.2011.10.008

    Lazear H M, Nice T J, Diamond M S. Interferon-λ: immune functions at barrier surfaces and beyond[J]. Immunity, 2015, 43(1): 15-28. doi: 10.1016/j.immuni.2015.07.001

    Teijaro J R. Type I interferons in viral control and immune regulation[J]. Current Opinion in Virology, 2016, 16: 31-40. doi: 10.1016/j.coviro.2016.01.001

    Schoenborn J R, Wilson C B. Regulation of interferon‐γ during innate and adaptive immune responses[J]. Advances in Immunology, 2007, 96: 41-101.

    Chen S N, Li B, Gan Z, et al. Transcriptional regulation and signaling of type IV IFN with identification of the ISG repertoire in an amphibian model, Xenopus laevis[J]. The Journal of Immunology, 2023, 210(11): 1771-1789. doi: 10.4049/jimmunol.2300085

    Chen L, Liu J, Yan J, et al. Cloning and characterization of type IV interferon from black carp Mylopharyngodon piceus[J]. Developmental & Comparative Immunology, 2023, 140: 104614.

    Isaacs A, Lindenmann J. Virus interference. I. The interferon[J]. Proceedings of the Royal Society B:Biological Sciences, 1957, 147(927): 258-267.

    Pestka S. The interferons: 50 years after their discovery, there is much more to learn[J]. Journal of Biological Chemistry, 2007, 282(28): 20047-20051. doi: 10.1074/jbc.R700004200

    Detournay O, Morrison D A, Wagner B, et al. Genomic analysis and mRNA expression of equine type I interferon genes[J]. Journal of Interferon & Cytokine Research, 2013, 33(12): 746-759.

    Sen G C. Viruses and interferons[J]. Annual Review of Microbiology, 2001, 55: 255-281. doi: 10.1146/annurev.micro.55.1.255

    Haller O, Kochs G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity[J]. Traffic, 2002, 3(10): 710-717. doi: 10.1034/j.1600-0854.2002.31003.x

    Stark G R, Kerr I M, Williams B R G, et al. How cells respond to interferons[J]. Annual Review of Biochemistry, 1998, 67: 227-264. doi: 10.1146/annurev.biochem.67.1.227

    Biron C A, Nguyen K B, Pien G C, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines[J]. Annual Review of Immunology, 1999, 17: 189-220. doi: 10.1146/annurev.immunol.17.1.189

    Altmann S M, Mellon M T, Distel D L, et al. Molecular and functional analysis of an interferon gene from the zebrafish, Danio rerio[J]. Journal of Virology, 2003, 77(3): 1992-2002. doi: 10.1128/JVI.77.3.1992-2002.2003

    Robertsen B, Bergan V, Røkenes T, et al. Atlantic salmon interferon genes: cloning, sequence analysis, expression, and biological activity[J]. Journal of Interferon & Cytokine Research, 2003, 23(10): 601-612.

    Lutfalla G, Crollius H R, Stange-Thomann N, et al. Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: the class II cytokine receptors and their ligands in mammals and fish[J]. BMC Genomics, 2003, 4(1): 29. doi: 10.1186/1471-2164-4-29

    Li B, Chen S N, Ren L, et al. Identification of type I IFNs and their receptors in a cyprinid fish, the topmouth culter Culter alburnus[J]. Fish & Shellfish Immunology, 2020, 102: 326-335.

    Chang M X, Nie P, Collet B, et al. Identification of an additional two-cysteine containing type I interferon in rainbow trout Oncorhynchus mykiss provides evidence of a major gene duplication event within this gene family in teleosts[J]. Immunogenetics, 2009, 61(4): 315-325. doi: 10.1007/s00251-009-0366-y

    Gan Z, Chen S N, Huang B, et al. Fish type I and type II interferons: composition, receptor usage, production and function[J]. Reviews in Aquaculture, 2020, 12(2): 773-804. doi: 10.1111/raq.12349

    Li D M, Tan W L, Ma M S, et al. Molecular characterization and transcription regulation analysis of type I IFN gene in grass carp (Ctenopharyngodon idella)[J]. Gene, 2012, 504(1): 31-40. doi: 10.1016/j.gene.2012.04.091

    Xia S Y, Wang H, Hong X P, et al. Identification and characterization of a type I interferon induced by cyprinid herpesvirus 2 infection in crucian carp Carassius auratus gibelio[J]. Fish & Shellfish Immunology, 2018, 76: 35-40.

    Huang Z L, Chen S, Liu J C, et al. IFNa of black carp is an antiviral cytokine modified with N-linked glycosylation[J]. Fish & Shellfish Immunology, 2015, 46(2): 477-485.

    Wu H, Liu L Q, Wu S Z, et al. IFNb of black carp functions importantly in host innate immune response as an antiviral cytokine[J]. Fish & Shellfish Immunology, 2018, 74: 1-9.

    Laghari Z A, Chen S N, Li L, et al. Functional, signalling and transcriptional differences of three distinct type I IFNs in a perciform fish, the mandarin fish Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2018, 84: 94-108.

    Liu L H, Nie P, Wang S, et al. Identification of type I and type II IFNs in a perciform fish, the snakehead Channa argus[J]. Aquaculture Reports, 2021, 20: 100749. doi: 10.1016/j.aqrep.2021.100749

    Ding Y, Ao J Q, Huang X H, et al. Identification of two subgroups of type I IFNs in perciforme fish large yellow croaker Larimichthys crocea provides novel insights into function and regulation of fish type I IFNs[J]. Frontiers in Immunology, 2016, 7: 343.

    Chen J J, Guan Y Y, Guan H X, et al. Molecular and structural basis of receptor binding and signaling of a fish type I IFN with three disulfide bonds[J]. The Journal of Immunology, 2022, 209(4): 806-819. doi: 10.4049/jimmunol.2200202

    Zou J, Secombes C J. Teleost fish interferons and their role in immunity[J]. Developmental & Comparative Immunology, 2011, 35(12): 1376-1387.

    Boudinot P, Langevin C, Secombes C J, et al. The peculiar characteristics of fish type I interferons[J]. Viruses, 2016, 8(11): 298. doi: 10.3390/v8110298

    Qi Z T, Nie P, Secombes C J, et al. Intron-containing type I and type III IFN coexist in amphibians: refuting the concept that a retroposition event gave rise to type I IFNs[J]. The Journal of Immunology, 2010, 184(9): 5038-5046. doi: 10.4049/jimmunol.0903374

    Gan Z, Yang Y C, Chen S N, et al. Unique composition of intronless and intron-containing type I IFNs in the tibetan frog Nanorana parkeri provides new evidence to support independent retroposition hypothesis for type I IFN genes in amphibians[J]. The Journal of Immunology, 2018, 201(11): 3329-3342. doi: 10.4049/jimmunol.1800553

    Gan Z, Chen S N, Huang B, et al. Intronless and intron-containing type I IFN genes coexist in amphibian Xenopus tropicalis: insights into the origin and evolution of type I IFNs in vertebrates[J]. Developmental & Comparative Immunology, 2017, 67: 166-176.

    Bergan V, Steinsvik S, Xu H, et al. Promoters of type I interferon genes from Atlantic salmon contain two main regulatory regions[J]. FEBS Journal, 2006, 273(17): 3893-3906. doi: 10.1111/j.1742-4658.2006.05382.x

    Purcell M K, Laing K J, Woodson J C, et al. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes[J]. Fish & Shellfish Immunology, 2009, 26(2): 293-304.

    Long S, Wilson M, Bengten E, et al. Identification of a cDNA encoding channel catfish interferon[J]. Developmental & Comparative Immunology, 2004, 28(2): 97-111.

    Long S, Milev-Milovanovic I, Wilson M, et al. Identification and expression analysis of cDNAs encoding channel catfish type I interferons[J]. Fish & Shellfish Immunology, 2006, 21(1): 42-59.

    Chang M X, Zou J, Nie P, et al. Intracellular interferons in fish: a unique means to combat viral infection[J]. PLoS Pathogens, 2013, 9(11): e1003736. doi: 10.1371/journal.ppat.1003736

    Levraud J P, Boudinot P, Colin I, et al. Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system[J]. The Journal of Immunology, 2007, 178(7): 4385-4394. doi: 10.4049/jimmunol.178.7.4385

    Zou J, Tafalla C, Truckle J, et al. Identification of a second group of type I IFNs in fish sheds light on IFN evolution in vertebrates[J]. The Journal of Immunology, 2007, 179(6): 3859-3871. doi: 10.4049/jimmunol.179.6.3859

    Ding Y, Guan Y Y, Huang X H, et al. Characterization and function of a group II type I interferon in the perciform fish, large yellow croaker (Larimichthys crocea)[J]. Fish & Shellfish Immunology, 2019, 86: 152-159.

    Liu F G, Bols N C, Pham P H, et al. Evolution of IFN subgroups in bony fish - 1: Group I-III IFN exist in early ray-finned fish, with group II IFN subgroups present in the Holostean spotted gar, Lepisosteus oculatus[J]. Fish & Shellfish Immunology, 2019, 95: 163-170.

    Liu F G, Wang T H, Petit J, et al. Evolution of IFN subgroups in bony fish - 2. Analysis of subgroup appearance and expansion in teleost fish with a focus on salmonids[J]. Fish & Shellfish Immunology, 2020, 98: 564-573.

    Zou J, Gorgoglione B, Taylor N G, et al. Salmonids have an extraordinary complex type I IFN system: characterization of the IFN locus in rainbow trout Oncorhynchus mykiss reveals two novel IFN subgroups[J]. The Journal of Immunology, 2014, 193(5): 2273-2286. doi: 10.4049/jimmunol.1301796

    Milne D J, Campoverde C, Andree K B, et al. The discovery and comparative expression analysis of three distinct type I interferons in the perciform fish, meagre (Argyrosomus regius)[J]. Developmental & Comparative Immunology, 2018, 84: 123-132.

    Hu Y W, Yoshikawa T, Chung S, et al. Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus[J]. Fish & Shellfish Immunology, 2017, 67: 7-10.

    Pereiro P, Costa M M, Díaz-Rosales P, et al. The first characterization of two type I interferons in turbot (Scophthalmus maximus) reveals their differential role, expression pattern and gene induction[J]. Developmental & Comparative Immunology, 2014, 45(2): 233-244.

    Xu Q Q, Luo K, Zhang S H, et al. Sequence analysis and characterization of type I interferon and type II interferon from the critically endangered sturgeon species, A. dabryanus and A. sinensis[J]. Fish & Shellfish Immunology, 2019, 84: 390-403.

    Aggad D, Stein C, Sieger D, et al. In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish[J]. The Journal of Immunology, 2010, 185(11): 6774-6782. doi: 10.4049/jimmunol.1000549

    Deng Y H, Li B, Chen S N, et al. Molecular characterization of nineteen cytokine receptor family B (CRFB) members, CRFB1, CRFB2, CRFB4-17, with three CRFB9 and two CRFB14 in a cyprinid fish, the blunt snout bream Megalobrama amblycephala[J]. Developmental & Comparative Immunology, 2023, 145: 104725.

    Sun B J, Greiner-Tollersrud L, Koop B F, et al. Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals[J]. Developmental & Comparative Immunology, 2014, 47(2): 275-286.

    Aggad D, Mazel M, Boudinot P, et al. The two groups of zebrafish virus-induced interferons signal via distinct receptors with specific and shared chains[J]. The Journal of Immunology, 2009, 183(6): 3924-3931. doi: 10.4049/jimmunol.0901495

    Gan Z, Cheng J, Chen S N, et al. Identification and characterization of tilapia CRFB1, CRFB2 and CRFB5 reveals preferential receptor usage of three IFN subtypes in perciform fishes[J]. Fish & Shellfish Immunology, 2020, 107: 194-201.

    Chen H R, Liu W Q, Wang B H, et al. Cloning, identification of the two cytokine receptor family B subunits CRFB1 and CRFB5 from grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2015, 45(2): 211-220.

    Xu Q Q, Deng D, Guo H Z, et al. Comprehensive comparison of thirteen kinds of cytokine receptors from the endangered fish Chinese sturgeon (Acipenser sinensis)[J]. Developmental & Comparative Immunology, 2021, 123: 104132.

    Wang Z X, Xu J, Feng J H, et al. Structural and functional analyses of type I IFNa shed light into its interaction with multiple receptors in fish[J]. Frontiers in Immunology, 2022, 13: 862764. doi: 10.3389/fimmu.2022.862764

    Wang S, Chen S N, Sun Z, et al. Four type I IFNs, IFNa1, IFNa2, IFNb, IFNc, and their receptor usage in an osteoglossomorph fish, the Asian arowana, Scleropages formosus[J]. Fish & Shellfish Immunology, 2021, 117: 70-81.

    Guo C J, Zhang Y F, Yang L S, et al. The JAK and STAT family members of the mandarin fish Siniperca chuatsi: molecular cloning, tissues distribution and immunobiological activity[J]. Fish & Shellfish Immunology, 2009, 27(2): 349-359.

    Stein C, Caccamo M, Laird G, et al. Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish[J]. Genome Biology, 2007, 8(11): R251. doi: 10.1186/gb-2007-8-11-r251

    Ruan B Y, Chen S N, Hou J, et al. Two type II IFN members, IFN-γ and IFN-γ related (rel), regulate differentially IRF1 and IRF11 in zebrafish[J]. Fish & Shellfish Immunology, 2017, 65: 103-110.

    Wu H, Zhang Y Y, Lu X Y, et al. STAT1a and STAT1b of black carp play important roles in the innate immune defense against GCRV[J]. Fish & Shellfish Immunology, 2019, 87: 386-394.

    Qin Y H, Liu H X, Zhang P P, et al. Molecular cloning, expression and functional analysis of STAT2 in orange-spotted grouper, Epinephelus coioides[J]. Fish & Shellfish Immunology, 2022, 131: 1245-1254.

    Sobhkhez M, Skjesol A, Thomassen E, et al. Structural and functional characterization of salmon STAT1, STAT2 and IRF9 homologs sheds light on interferon signaling in teleosts[J]. FEBS Open Bio, 2014, 4(1): 858-871. doi: 10.1016/j.fob.2014.09.007

    Xu C, Evensen Ø, Munang'andu H M. De novo assembly and transcriptome analysis of Atlantic salmon macrophage/dendritic-like TO cells following type I IFN treatment and salmonid alphavirus subtype-3 infection[J]. BMC Genomics, 2015, 16(1): 96. doi: 10.1186/s12864-015-1302-1

    Larsen R, Røkenes T P, Robertsen B. Inhibition of infectious pancreatic necrosis virus replication by atlantic salmon Mx1 protein[J]. Journal of Virology, 2004, 78(15): 7938-7944. doi: 10.1128/JVI.78.15.7938-7944.2004

    Liu T K, Zhang Y B, Liu Y, et al. Cooperative roles of fish protein kinase containing Z-DNA binding domains and double-stranded RNA-dependent protein kinase in interferon-mediated antiviral response[J]. Journal of Virology, 2011, 85(23): 12769-12780. doi: 10.1128/JVI.05849-11

    Liu W, Xiang Y X, Zhang W W, et al. Expression pattern, antiviral role and regulation analysis of interferon-stimulated gene 15 in black seabream, Acanthopagrus schlegelii[J]. Fish & Shellfish Immunology, 2018, 82: 60-67.

    Wang B, Zhang Y B, Liu T K, et al. Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway[J]. Developmental & Comparative Immunology, 2014, 47(1): 140-149.

    Xu C, Guo T C, Mutoloki S, et al. Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro[J]. Journal of Virology, 2010, 84(17): 8903-8912. doi: 10.1128/JVI.00851-10

    Svingerud T, Solstad T, Sun B J, et al. Atlantic salmon type I IFN subtypes show differences in antiviral activity and cell-dependent expression: evidence for high IFNb/IFNc-producing cells in fish lymphoid tissues[J]. The Journal of Immunology, 2012, 189(12): 5912-5923. doi: 10.4049/jimmunol.1201188

    López-Muñoz A, Roca F J, Meseguer J, et al. New insights into the evolution of IFNs: zebrafish group II IFNs induce a rapid and transient expression of IFN-dependent genes and display powerful antiviral activities[J]. The Journal of Immunology, 2009, 182(6): 3440-3449. doi: 10.4049/jimmunol.0802528

    Wang L, Wang L, Zhang H X, et al. In vitro effects of recombinant zebrafish IFN on spring viremia of carp virus and infectious hematopoietic necrosis virus[J]. Journal of Interferon & Cytokine Research, 2006, 26(4): 256-259.

    Chang C J, Jenssen I, Robertsen B. Protection of Atlantic salmon against salmonid alphavirus infection by type I interferons IFNa, IFNb and IFNc[J]. Fish & Shellfish Immunology, 2016, 57: 35-40.

    Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon[J]. Developmental & Comparative Immunology, 2018, 80: 41-52.

    Ding Y, Guan Y Y, Ao J Q, et al. Induction of type I interferons in response to bacterial stimuli in large yellow croaker Larimichthys crocea[J]. Fish & Shellfish Immunology, 2017, 62: 349-355.

    Li Z S, Xu X P, Huang L C, et al. Administration of recombinant IFN1 protects zebrafish (Danio rerio) from ISKNV infection[J]. Fish & Shellfish Immunology, 2010, 29(3): 399-406.

    Li D M, Lin G, Yu X J, et al. Immunoprotection of grass carp (Ctenopharyngodon idella) with recombinant interferon (rCiIFN) against GCHV infection[J]. Aquaculture, 2013, 388-391: 42-48. doi: 10.1016/j.aquaculture.2013.01.017

    Yan J, Peng L Z, Li Y, et al. IFNa of triploid hybrid of gold fish and allotetraploid is an antiviral cytokine against SVCV and GCRV[J]. Fish & Shellfish Immunology, 2016, 54: 529-536.

    Zhou Y Z, Jiang N, Fan Y D, et al. Identification, expression profiles and antiviral activities of a type I IFN from gibel carp Carassius auratus gibelio[J]. Fish & Shellfish Immunology, 2019, 91: 78-86.

    Kuo H P, Chung C L, Hung Y F, et al. Comparison of the responses of different recombinant fish type I interferons against betanodavirus infection in grouper[J]. Fish & Shellfish Immunology, 2016, 49: 143-153.

    Boxx G M, Cheng G H. The roles of Type I interferon in bacterial infection[J]. Cell Host & Microbe, 2016, 19(6): 760-769.

    Secombes C J, Zou J. Evolution of interferons and interferon receptors[J]. Frontiers in Immunology, 2017, 8: 209.

    Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: an update[J]. Fish & Shellfish Immunology, 2019, 90: 150-164.

    Chinchar V G, Logue O, Antao A, et al. Channel catfish reovirus (CRV) inhibits replication of channel catfish herpesvirus (CCV) by two distinct mechanisms: viral interference and induction of an anti-viral factor[J]. Diseases of Aquatic Organisms, 1998, 33(2): 77-85.

    Zou J, Yoshiura Y, Dijkstra J M, et al. Identification of an interferon gamma homologue in Fugu, Takifugu rubripes[J]. Fish & Shellfish Immunology, 2004, 17(4): 403-409.

    Liang Y, Zhu K C, You Y Z, et al. Molecular characterization of TNF-β and IFN-γ in yellowfin seabream (Acanthopagrus latus, Hottuyn, 1782) and their immune responses to density stress during transport[J]. Developmental & Comparative Immunology, 2023, 147: 104747.

    Li L, Chen S N, Laghari Z A, et al. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2019, 97: 98-112.

    Zou J, Carrington A, Collet B, et al. Identification and bioactivities of IFN-γ in rainbow trout Oncorhynchus mykiss: the first Th1-type cytokine characterized functionally in fish[J]. The Journal of Immunology, 2005, 175(4): 2484-2494. doi: 10.4049/jimmunol.175.4.2484

    Milev-Milovanovic I, Long S, Wilson M, et al. Identification and expression analysis of interferon gamma genes in channel catfish[J]. Immunogenetics, 2006, 58(1): 70-80. doi: 10.1007/s00251-006-0081-x

    Stolte E H, Savelkoul H F J, Wiegertjes G, et al. Differential expression of two interferon-γ genes in common carp (Cyprinus carpio L. )[J]. Developmental & Comparative Immunology, 2008, 32(12): 1467-1481.

    Furnes C, Seppola M, Robertsen B. Molecular characterisation and expression analysis of interferon gamma in Atlantic cod (Gadus morhua)[J]. Fish & Shellfish Immunology, 2009, 26(2): 285-292.

    Grayfer L, Belosevic M. Molecular characterization, expression and functional analysis of goldfish (Carassius aurutus L. ) interferon gamma[J]. Developmental & Comparative Immunology, 2009, 33(2): 235-246.

    Sun B J, Skjaeveland I, Svingerud T, et al. Antiviral activity of salmonid gamma interferon against infectious pancreatic necrosis virus and salmonid alphavirus and its dependency on type I interferon[J]. Journal of Virology, 2011, 85(17): 9188-9198. doi: 10.1128/JVI.00319-11

    Yang S S, Li Q H, Mu Y N, et al. Functional activities of interferon gamma in large yellow croaker Larimichthys crocea[J]. Fish & Shellfish Immunology, 2017, 70: 545-552.

    Wang H X, Guo M, Tang X Q, et al. Immune adjuvant effects of interferon-gamma (IFN-γ) of flounder (Paralichthys olivaceus) against Edwardsiella tarda[J]. Developmental & Comparative Immunology, 2021, 123: 104159.

    Chen R N, Su Y Q, Wang J, et al. Molecular characterization and expression analysis of interferon-gamma in the large yellow croaker Larimichthys crocea[J]. Fish & Shellfish Immunology, 2015, 46(2): 596-602.

    Chen W Q, Xu Q Q, Chang M X, et al. Molecular characterization and expression analysis of the IFN-gamma related gene (IFN-γrel) in grass carp Ctenopharyngodon idella[J]. Veterinary Immunology and Immunopathology, 2010, 134(3-4): 199-207.

    Yabu T, Toda H, Shibasaki Y, et al. Antiviral protection mechanisms mediated by ginbuna crucian carp interferon gamma isoforms 1 and 2 through two distinct interferon gamma-receptors[J]. The Journal of Biochemistry, 2011, 150(6): 635-648. doi: 10.1093/jb/mvr108

    Shibasaki Y, Yabu T, Araki K, et al. Peculiar monomeric interferon gammas, IFNγrel 1 and IFNγrel 2, in ginbuna crucian carp[J]. FEBS Journal, 2014, 281(4): 1046-1056. doi: 10.1111/febs.12666

    Pang A N, Chen S N, Gan Z, et al. Identification of type II interferons and receptors in an osteoglossiform fish, the arapaima Arapaima gigas[J]. Developmental & Comparative Immunology, 2022, 139: 104589.

    Schroder K, Hertzog P J, Ravasi T, et al. Interferon-γ: an overview of signals, mechanisms and functions[J]. Journal of Leukocyte Biology, 2004, 75(2): 163-189. doi: 10.1189/jlb.0603252

    Grayfer L, Belosevic M. Molecular characterization of novel interferon gamma receptor 1 isoforms in zebrafish (Danio rerio) and goldfish (Carassius auratus L. )[J]. Molecular Immunology, 2009, 46(15): 3050-3059. doi: 10.1016/j.molimm.2009.06.004

    Zahradník J, Kolářová L, Pařízková H, et al. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function[J]. Fish & Shellfish Immunology, 2018, 79: 140-152.

    Gao Q, Nie P, Thompson K D, et al. The search for the IFN-γ receptor in fish: functional and expression analysis of putative binding and signalling chains in rainbow trout Oncorhynchus mykiss[J]. Developmental & Comparative Immunology, 2009, 33(8): 920-931.

    Zhu X Z, Wang J Y, Jia Z, et al. Novel dimeric architecture of an IFN-γ-related cytokine provides insights into subfunctionalization of type II IFNs in teleost fish[J]. The Journal of Immunology, 2022, 209(11): 2203-2214. doi: 10.4049/jimmunol.2200334

    Shibasaki Y, Hatanaka C, Matsuura Y, et al. Effects of IFNγ administration on allograft rejection in ginbuna crucian carp[J]. Developmental & Comparative Immunology, 2016, 62: 108-115.

    Peng W, Sun Y, Li G F, et al. Two distinct interferon-γ in the orange-spotted grouper (Epinephelus coioides): molecular cloning, functional characterization, and regulation in toll-like receptor pathway by induction of miR-146a[J]. Frontiers in Endocrinology, 2018, 9: 41. doi: 10.3389/fendo.2018.00041

    Grayfer L, Garcia E G, Belosevic M. Comparison of macrophage antimicrobial responses induced by type II interferons of the goldfish (Carassius auratus L. )[J]. Journal of Biological Chemistry, 2010, 285(31): 23537-23547. doi: 10.1074/jbc.M109.096925

    Zhang W X, Zhao Z J, Zhou J C, et al. Carboxymethyl chitosan nanoparticles loaded with Ctenopharyngodon idella interferon-γ2 (CiIFN-γ2) enhance protective efficacy against bacterial infection in grass carp[J]. Aquaculture, 2023, 572: 739554. doi: 10.1016/j.aquaculture.2023.739554

    Yin L C, Lv M Y, Qiu X Y, et al. IFN-γ manipulates NOD1-mediated interaction of autophagy and Edwardsiella piscicida to augment intracellular clearance in Fish[J]. The Journal of Immunology, 2021, 207(4): 1087-1098. doi: 10.4049/jimmunol.2100151

    Li L, Chen S N, Laghari Z A, et al. Myxovirus resistance (Mx) gene and its differential expression regulated by three type I and two type II IFNs in mandarin fish, Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2020, 105: 103604.

    Li L, Chen S N, Li N, et al. Transcriptional and subcellular characterization of interferon induced protein-35 (IFP35) in mandarin fish, Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2021, 115: 103877.

    Li L, Chen S N, Li N, et al. Molecular characterization and transcriptional conservation of N-myc-interactor, Nmi, by type I and type II IFNs in mandarin fish Siniperca chuatsi[J]. Developmental & Comparative Immunology, 2022, 130: 104354.

    Lu X B, Zeng J W, Jia K T, et al. Antiviral activities of sea perch type I and type II IFNs against RGNNV and their different roles in antigen presentation[J]. Aquaculture, 2021, 534: 736314. doi: 10.1016/j.aquaculture.2020.736314

    Nayak S K, Shibasaki Y, Nakanishi T. Immune responses to live and inactivated Nocardia seriolae and protective effect of recombinant interferon gamma (rIFN γ) against nocardiosis in ginbuna crucian carp, Carassius auratus langsdorfii[J]. Fish & Shellfish Immunology, 2014, 39(2): 354-364.

    Hou J, Chen S N, Gan Z, et al. In primitive zebrafish, MHC class II expression is regulated by IFN-γ, IRF1, and two forms of CIITA[J]. The Journal of Immunology, 2020, 204(9): 2401-2415. doi: 10.4049/jimmunol.1801480

    Cao Y S, Zhang Q Y, Xu L M, et al. Effects of different cytokines on immune responses of rainbow trout in a virus DNA vaccination model[J]. Oncotarget, 2017, 8(68): 112222-112235. doi: 10.18632/oncotarget.23095

    Ai K T, Li K, Jiao X Y, et al. IL-2-mTORC1 signaling coordinates the STAT1/T-bet axis to ensure Th1 cell differentiation and anti-bacterial immune response in fish[J]. PLoS Pathogens, 2022, 18(10): e1010913. doi: 10.1371/journal.ppat.1010913

    Peng W, Lu D Q, Li G F, et al. Two distinct interferon-γ genes in Tetraodon nigroviridis: functional analysis during Vibrio parahaemolyticus infection[J]. Molecular Immunology, 2016, 70: 34-46. doi: 10.1016/j.molimm.2015.12.004

    Arts J A J, Tijhaar E J, Chadzinska M, et al. Functional analysis of carp interferon-γ: evolutionary conservation of classical phagocyte activation[J]. Fish & Shellfish Immunology, 2010, 29(5): 793-802.

    Zhang M, Liu W Q, Wang Y, et al. Identification, expression pattern and functional characterization of IFN-γ involved in activating JAK-STAT pathway in Sebastes schlegeli[J]. Fish & Shellfish Immunology, 2023: 108936.

    Wang D, Fang L R, Zhao F W, et al. Molecular cloning, expression and antiviral activity of porcine interleukin-29 (poIL-29)[J]. Developmental & Comparative Immunology, 2011, 35(3): 378-384.

    Yao Q X, Fischer K P, Arnesen K, et al. Molecular cloning, expression and characterization of Pekin duck interferon-λ[J]. Gene, 2014, 548(1): 29-38. doi: 10.1016/j.gene.2014.06.066

    Chen S N, Zhang X W, Li L, et al. Evolution of IFN-λ in tetrapod vertebrates and its functional characterization in green anole lizard (Anolis carolinensis)[J]. Developmental & Comparative Immunology, 2016, 61: 208-224.

    Fox B A, Sheppard P O, O'hara P J. The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family[J]. PLoS One, 2009, 4(3): e4933. doi: 10.1371/journal.pone.0004933

    Onoguchi K, Yoneyama M, Takemura A, et al. Viral infections activate types I and III interferon genes through a common mechanism[J]. Journal of Biological Chemistry, 2007, 282(10): 7576-7581. doi: 10.1074/jbc.M608618200

    Miknis Z J, Magracheva E, Li W, et al. Crystal structure of human interferon-λ1 in complex with its high-affinity receptor interferon-λR1[J]. Journal of Molecular Biology, 2010, 404(4): 650-664. doi: 10.1016/j.jmb.2010.09.068

    Kotenko S V. IFN-λs[J]. Current Opinion in Immunology, 2011, 23(5): 583-590. doi: 10.1016/j.coi.2011.07.007

    Coccia E M, Severa M, Giacomini E, et al. Viral infection and Toll-like receptor agonists induce a differential expression of type I and λ interferons in human plasmacytoid and monocyte-derived dendritic cells[J]. European Journal of Immunology, 2004, 34(3): 796-805. doi: 10.1002/eji.200324610

    Robertsen B. The interferon system of teleost fish[J]. Fish & Shellfish Immunology, 2006, 20(2): 172-191.

    Hamming O J, Lutfalla G, Levraud J P, et al. Crystal structure of zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates[J]. Journal of Virology, 2011, 85(16): 8181-8187. doi: 10.1128/JVI.00521-11

(1)

计量
  • 文章访问数:  1126
  • PDF下载数:  581
  • 施引文献:  0
出版历程
收稿日期:  2023-08-25
修回日期:  2023-09-29
录用日期:  2023-10-28
刊出日期:  2023-11-01

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发