Nucleotide polymorphism and function of piscine histone H2A in Edwardsiella piscicida infection
-
摘要: 组蛋白是染色体核小体的重要组分,在调控染色质结构、基因转录、个体发育等不同生物学过程中起着重要作用。为了研究鱼类组蛋白基因是否存在核苷酸的多态性以及组蛋白核苷酸多态性是否会影响鱼类的抗病力,本实验以斑马鱼和草鱼为研究对象,通过PCR扩增克隆了组蛋白H2A的全长开放阅读框;利用过表达技术、菌落平板计数、感染存活分析以及荧光定量PCR技术,研究了斑马鱼和草鱼组蛋白H2A核苷酸多态性不同变异体在杀鱼爱德华氏菌感染中的作用。在本研究中,实验发现鱼类组蛋白H2A存在着丰富的核苷酸多态性。序列分析结果显示斑马鱼和草鱼组蛋白H2A核苷酸多态性的变异体核苷酸序列相似性为90%~100%;而两两H2A核苷酸多态性变异体氨基酸序列之间最多只有3个位点存在差异。通过体内和体外抗菌实验可知,斑马鱼和草鱼组蛋白H2A核苷酸的多态性显著影响H2A的抗菌活性。此外,筛选出的抗菌组蛋白H2A核苷酸多态性的变异体在斑马鱼体内的过表达,不仅具有免疫增强的作用,还能显著增强斑马鱼对杀鱼爱德华氏菌感染的抗病力。本研究为筛选具有抗病作用的组蛋白H2A免疫保护原奠定了重要基础。Abstract: Histones are central components of nucleosome and chromatin, which play critical roles in diversifying chromatin structure, transcriptional regulation, ontogenesis and so on. Although there were a lot of reports on the effects of piscine histones in the development, gene transcription regulation and anti-microbial properties of histone-derived antimicrobial peptides, the roles of histone nucleotide polymorphism in pathogen infection have not been reported in any species of vertebrates. In the present study, we found that nucleotide polymorphisms were abundant in zebrafish (Danio rerio) and grass carp (Ctenopharyngodon idella) H2A. There was 90%-100% identity among D. rerio and C. idella H2A variants at the nucleotide level. At most 3 sites of amino acid mutation existed between H2A variants from D. rerio or C. idella. The results from the in vitro and in vivo studies showed that the nucleotide polymorphism of D. rerio and C. idella H2A significantly affected the antibacterial activities of H2A. Furthermore, the overexpression of D. rerio antibacterial H2A variants in D. rerio embryos and/or larvae not only has the immune enhancement effect, but also enhances the resistence of D. rerio larvae against Edwardsiella piscicida infection. The present study established the immunological basis of histone H2A variants with nucleotide polymorphism in disease susceptibility or disease resistance.
-
图 8 斑马鱼组蛋白zfH2A-1(a)和zfH2A-3(b)对感染有杀鱼爱德华氏菌幼鱼存活率的影响[42]
Figure 8. Effect of zfH2A-1 (a) and zfH2A-3 (b) on the overall survival rate of D. rerio larvae infected with E. piscicida
-
Fischle W, Wang Y M, Allis C D. Histone and chromatin cross-talk[J]. Current Opinion in Cell Biology, 2003, 15(2): 172-183. doi: 10.1016/S0955-0674(03)00013-9
Fuchs J, Demidov D, Houben A, et al. Chromosomal histone modification patterns-from conservation to diversity[J]. Trends in Plant Science, 2006, 11(4): 199-208. doi: 10.1016/j.tplants.2006.02.008
Waters R, van Eijk P, Reed S. Histone modification and chromatin remodeling during NER[J]. DNA Repair, 2015, 36: 105-113. doi: 10.1016/j.dnarep.2015.09.013
Miller J L, Grant P A. The role of DNA methylation and histone modifications in transcriptional regulation in humans[M]//Kundu T K. Epigenetics: development and Disease. Dordrecht: Springer, 2013: 289-317.
Messner S, Hottiger M O. Histone ADP-ribosylation in DNA repair, replication and transcription[J]. Trends in Cell Biology, 2011, 21(9): 534-542. doi: 10.1016/j.tcb.2011.06.001
Doenecke D. Chromatin dynamics from S-phase to mitosis: contributions of histone modifications[J]. Cell and Tissue Research, 2014, 356(3): 467-475. doi: 10.1007/s00441-014-1873-1
Oliver C, Pradillo M, Corredor E, et al. The dynamics of histone H3 modifications is species-specific in plant meiosis[J]. Planta, 2013, 238(1): 23-33. doi: 10.1007/s00425-013-1885-1
Li F F, Wan M, Zhang B P, et al. Bivalent histone modifications and development[J]. Current Stem Cell Research & Therapy, 2018, 13(2): 83-90.
Th'ng J P. Histone modifications and apoptosis: cause or consequence?[J]. Biochemistry and Cell Biology, 2001, 79(3): 305-311. doi: 10.1139/o01-031
Füllgrabe J, Hajji N, Joseph B. Cracking the death code: apoptosis-related histone modifications[J]. Cell Death & Differentiation, 2010, 17(8): 1238-1243.
Sawan C, Herceg Z. Histone modifications and cancer[J]. Advances in Genetics, 2010, 70: 57-85. doi: 10.1016/B978-0-12-380866-0.60003-4
Cunliffe V T. Histone modifications in zebrafish development[J]. Methods in Cell Biology, 2016, 135: 361-385. doi: 10.1016/bs.mcb.2016.05.005
Araya I, Nardocci G, Morales J P, et al. MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish[J]. Epigenetics & Chromatin, 2010, 3(1): 14.
Sung M T, Dixon G H. Modification of histones during spermiogenesis in trout: a molecular mechanism for altering histone binding to DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1970, 67(3): 1616-1623. doi: 10.1073/pnas.67.3.1616
Vastenhouw N L, Schier A F. Bivalent histone modifications in early embryogenesis[J]. Current Opinion in Cell Biology, 2012, 24(3): 374-386. doi: 10.1016/j.ceb.2012.03.009
Simonet N G, Reyes M, Nardocci G, et al. Epigenetic regulation of the ribosomal cistron seasonally modulates enrichment of H2A.Z and H2A.Zub in response to different environmental inputs in carp (Cyprinus carpio)[J]. Epigenetics & Chromatin, 2013, 6(1): 22.
Wu N, Yue H M, Chen B, et al. Histone H2A has a novel variant in fish oocytes[J]. Biology of Reproduction, 2009, 81(2): 275-283. doi: 10.1095/biolreprod.108.074955
Yue H M, Li Z, Wu N, et al. Oocyte-specific H2A variant H2af1o is required for cell synchrony before midblastula transition in early zebrafish embryos[J]. Biology of Reproduction, 2013, 89(4): 82.
Sivasubbu S, Balciunas D, Davidson A E, et al. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development[J]. Mechanisms of Development, 2006, 123(7): 513-529. doi: 10.1016/j.mod.2006.06.002
Buschbeck M, Uribesalgo I, Wibowo I, et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes[J]. Nature Structural & Molecular Biology, 2009, 16(10): 1074-1079.
Park I Y, Park C B, Kim M S, et al. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus[J]. FEBS Letters, 1998, 437(3): 258-262. doi: 10.1016/S0014-5793(98)01238-1
Birkemo G A, Lüders T, Andersen Ø, et al. Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.)[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2003, 1646(1-2): 207-215. doi: 10.1016/S1570-9639(03)00018-9
Chaithanya E R, Philip R, Sathyan N, et al. Molecular characterization and phylogenetic analysis of a histone-derived antimicrobial peptide teleostin from the marine teleost fishes, Tachysurus jella and Cynoglossus semifasciatus[J]. International Scholarly Research Notices, 2013, 2013: 185807.
Wu X M. The study of cloning, characteristic analyses and the expression of response of a bacterial infection in Carassius aurutus in Qihe river both of H2A and Ca-L-hipposin[D]. Xinxiang: Henan Normal University, 2014 (in Chinese).
Robinette D, Wada S, Arroll T, et al. Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins[J]. Cellular and Molecular Life Sciences, 1998, 54(5): 467-475. doi: 10.1007/s000180050175
Jin Y Y. The four freshwater fish histone H2B and its derived antimicrobial peptide HLP-1 gene cloning, characteristic analyses and prokaryotic expression[D]. Xinxiang: Henan Normal University, 2012 (in Chinese).
Fei W. The study of cloning, expression and analysis of antibacterial in Carassius auratus of histone H2B and HLP1[D]. Xinxiang: Henan Normal University, 2015 (in Chinese).
Singh D P, Bagam P, Sahoo M K, et al. Immune-related gene polymorphisms in pulmonary diseases[J]. Toxicology, 2017, 383: 24-39. doi: 10.1016/j.tox.2017.03.020
de Albuquerque M C, do Couto Aleixo A L Q, Benchimol E I, et al. The IFN-γ+874T/A gene polymorphism is associated with retinochoroiditis toxoplasmosis susceptibility[J]. Memórias do Instituto Oswaldo Cruz, 2009, 104(3): 451-455. doi: 10.1590/S0074-02762009000300009
Liu Q Q, Li W Z, Li D D, et al. TIRAP C539T polymorphism contributes to tuberculosis susceptibility: evidence from a meta-analysis[J]. Infection, Genetics and Evolution, 2014, 27: 32-39. doi: 10.1016/j.meegid.2014.06.025
Gorbea C, Makar K A, Pauschinger M, et al. A role for Toll-like receptor 3 variants in host susceptibility to enteroviral myocarditis and dilated cardiomyopathy[J]. Journal of Biological Chemistry, 2010, 285(30): 23208-23223. doi: 10.1074/jbc.M109.047464
Kindberg E, Vene S, Mickiene A, et al. A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection[J]. The Journal of Infectious Diseases, 2011, 203(4): 523-528. doi: 10.1093/infdis/jiq082
Sironi M, Biasin M, Cagliani R, et al. A common polymorphism in TLR3 confers natural resistance to HIV-1 infection[J]. The Journal of Immunology, 2012, 188(2): 818-823. doi: 10.4049/jimmunol.1102179
Capparelli R, De Chiara F, Di Matteo A, et al. The MyD88 rs6853 and TIRAP rs8177374 polymorphic sites are associated with resistance to human pulmonary tuberculosis[J]. Genes & Immunity, 2013, 14(8): 504-511.
Heng J F, Su J G, Huang T, et al. The polymorphism and haplotype of TLR3 gene in grass carp (Ctenopharyngodon idella) and their associations with susceptibility/resistance to grass carp reovirus[J]. Fish & Shellfish Immunology, 2011, 30(1): 45-50.
Liao Z W, Wan Q Y, Shang X Y, et al. Large-scale SNP screenings identify markers linked with GCRV resistant traits through transcriptomes of individuals and cell lines in Ctenopharyngodon idella[J]. Scientific Reports, 2017, 7(1): 1184. doi: 10.1038/s41598-017-01338-7
Wu X M, Cao L, Nie P, et al. Histone H2A cooperates with RIP2 to induce the expression of antibacterial genes and MHC related genes[J]. Developmental & Comparative Immunology, 2019, 101: 103455.
Wu X M, Chen W Q, Hu Y W, et al. RIP2 Is a critical regulator for NLRs signaling and MHC antigen presentation but Not for MAPK and PI3K/Akt pathways[J]. Frontiers in Immunology, 2018, 9: 726. doi: 10.3389/fimmu.2018.00726
Li J H, Yu Z L, Xue N N, et al. Molecular cloning and functional characterization of peptidoglycan recognition protein 6 in grass carp Ctenopharyngodon idella[J]. Developmental & Comparative Immunology, 2014, 42(2): 244-255.
Fang H, Wu X M, Hu Y W, et al. NLRC3-like 1 inhibits NOD1-RIPK2 pathway via targeting RIPK2[J]. Developmental & Comparative Immunology, 2020, 112: 103769.
Hu Y W, Wu X M, Ren S S, et al. NOD1 deficiency impairs CD44a/Lck as well as PI3K/Akt pathway[J]. Scientific Reports, 2017, 7(1): 2979. doi: 10.1038/s41598-017-03258-y
Chang M X, Wu X M, Cao L. Nucleic acid molecule, expression vector and application thereof, antibacterial drug and method thereof: CN, 201910460046.4[P]. 2019-09-03 (in Chinese).
Fernandes J M O, Kemp G D, Molle M G, et al. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss[J]. The Biochemical Journal, 2002, 368(2): 611-620. doi: 10.1042/bj20020980
Kim H S, Park C B, Kim M S, et al. cDNA cloning and characterization of Buforin I, an antimicrobial peptide: a cleavage product of histone H2A[J]. Biochemical and Biophysical Research Communications, 1996, 229(2): 381-387. doi: 10.1006/bbrc.1996.1814
Contrepois K, Coudereau C, Benayoun B A, et al. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression[J]. Nature Communications, 2017, 8: 14995. doi: 10.1038/ncomms14995