Complete genome sequence of an emerging fish pathogen Acinetobacter pittii strain Ap-W20 and its virulence characteristics
-
摘要: 皮特不动杆菌是一种新兴的鱼源致病菌,为了对该菌的致病机理进行研究并为该菌引起的鱼类疾病防治提供技术储备,实验选取皮特不动杆菌菌株Ap-W20进行了全基因组测序,并对其毒力特征进行了分析。结果发现,Ap-W20全基因组序列总长为4 399 705 bp,GC含量为38.78%,共预测到4 230个编码序列(CDS),存在4个质粒,GenBank数据库登录号为CP027658~CP027662。ANI分析结果证实,Ap-W20属于皮特不动杆菌,且Ap-W20与已知人源皮特不动杆菌AP_882(96.69%)和环境源皮特不动杆菌PHEA-2(96.55%)相似度较高。Ap-W20与AP_882、PHEA-2的比较基因组学分析发现,Ap-W20中的基因岛、前噬菌体和质粒数量最多,这很可能与它们各自的分离环境和致病力有关。通过与毒力因子数据库(VFDB)比对,在Ap-W20全基因组中预测到286个毒力基因,主要与黏附和抗吞噬等有关。Ap-W20中还存在Ⅰ、Ⅱ和Ⅵ型分泌系统、多套双组分调控系统以及细菌素合成基因簇等,表明鱼源皮特不动杆菌可能存在复杂的致病机制。本研究对鱼源皮特不动杆菌全基因组进行了毒力特征分析,为该菌引起的鱼类疾病防治奠定了基础。Abstract: In order to make a further study of the pathogenic mechanism of Acinetobacter pittii an emerging fish pathogen and provide technical reserves for the prevention and control of fish diseases caused by A. pittii, we selected A. pittii strain Ap-W20 for the whole genome sequencing and analysis of its virulence characteristics. The results showed that strain Ap-W20 contained a chromosome of 4 399 705 bp with an average G+C content of 38.78% and 4 230 coding sequences (CDS). Particularly, Ap-W20 carries four previously unreported plasmids. The GenBank accession numbers of Ap-W20 are CP027658–CP027662. The ANI analysis result confirmed that Ap-W20 belonged to A. pittii, and Ap-W20 had close similarities with A. pittii AP_882 from human (96.69%) and A. pittii PHEA-2 (96.55%) from environment. Comparative genomic analysis of Ap-W20 with AP_882 and PHEA-2 found that the numbers of gene islands, prophages and plasmids in Ap-W20 were the largest, which is likely related to their respective isolation environments and specific pathogenicity. In comparison with the VFDB database, 286 virulence genes were predicted in the entire genome of Ap-W20, mainly related to adhesion and anti-phagocytosis. Ap-W20 also has Type I, II and VI secretion systems, multiple sets of two-component regulatory system, and bacteriocin synthesis gene cluster, etc., which suggests that there may be complex pathogenic mechanisms in A. pittii derived from fish. This study demonstrates the complete genome sequence and the virulence characteristics of A. pittii from fish, which may provide a basis for the disease control caused by A. pittii.
-
-
表 1 Ap-W20基因组基本信息
Table 1. Genome features of A. pittii strain Ap-W20
特征
features染色体
chromosome质粒 plasmid pApW20-1 pApW20-2 pApW20-3 pApW20-4 长度/bp length 3 991 129 237 519 147 574 8 123 7 680 GC含量/% G+C content 38.80 37.92 40.33 36.26 33.11 CDS数量 no. of CDS 3 811 257 165 12 10 tRNA数量 no. of tRNAs 73 - - - - rRNA数量 no. of rRNAs 18 - - - - GenBank登录号 accession numbers CP027658 CP027659 CP027660 CP027661 CP027662 表 2 Ap-W20、AP_882和PHEA-2基因组中可移动元件的比较
Table 2. Comparison of the mobile elements in the genomes of strains Ap-W20, AP_882 and PHEA-2
菌株
strain质粒数/个
plasmid number基因岛数目/个 island number 完整的前噬菌体/个
intact prophage不完整的前噬菌体/个
incomplete prophage染色体
chromosome质粒
plasmidAp-W20 4 34 5 2 3 AP_882 2 12 3 0 1 PHEA-2 0 13 0 0 0 表 3 Ap-W20的毒力基因预测分类统计表
Table 3. Virulence genes of A. pittii strain Ap-W20 predicted by VFDB
毒力因子一级分类
level 1毒力因子二级分类
level 2基因数量/个
gene no.防御性毒力因子 defensive virulence factors 抗吞噬 anti-phagocytosis 16 压力蛋白 stress protein 8 细胞代谢 cellular metabolism 1 进攻性毒力因子 offensive virulence factors 黏附 adherence 48 分泌系统 secretion system 17 毒素 toxin 3 入侵 invasion 3 非特异性毒力因子 nonspecific virulence factor 铁摄取系统 iron uptake system 39 毒力调节相关基因 regulation of virulence-associated genes 调节 regulation 7 其他 others 144 -
Peleg A Y, Seifert H, Paterson D L. Acinetobacter baumannii: emergence of a successful pathogen[J]. Clinical Microbiology Reviews, 2008, 21(3): 538-582. doi: 10.1128/CMR.00058-07
Lee Y C, Huang Y T, Tan C K, et al. Acinetobacter baumannii and Acinetobacter genospecies 13TU and 3 bacteraemia: comparison of clinical features, prognostic factors and outcomes[J]. Journal of Antimicrobial Chemotherapy, 2011, 66(8): 1839-1846. doi: 10.1093/jac/dkr200
Cosgaya C, Marí-Almirall M, Van Assche A, et al. Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(10): 4105-4111. doi: 10.1099/ijsem.0.001318
Doughari H J, Ndakidemi P A, Human I S, et al. The ecology, biology and pathogenesis of Acinetobacter spp. : an overview[J]. Microbes and Environments, 2011, 26(2): 101-112. doi: 10.1264/jsme2.ME10179
Gu D X, Hu Y J, Zhou H W, et al. Substitutions of Ser83Leu in GyrA and Ser80Leu in ParC associated with quinolone resistance in Acinetobacter pittii[J]. Microbial Drug Resistance, 2015, 21(3): 345-351. doi: 10.1089/mdr.2014.0057
Sung J Y, Koo S H, Kim S, et al. Emergence of Acinetobacter pittii harboring New Delhi metallo-β-lactamase genes in Daejeon, Korea[J]. Annals of Laboratory Medicine, 2015, 35(5): 531-534. doi: 10.3343/alm.2015.35.5.531
Wang X H, Chen T, Yu R J, et al. Acinetobacter pittii and Acinetobacter nosocomialis among clinical isolates of the Acinetobacter calcoaceticus-baumannii complex in Sichuan, China[J]. Diagnostic Microbiology and Infectious Disease, 2013, 76(3): 392-395. doi: 10.1016/j.diagmicrobio.2013.03.020
Erbay A, İdil A, Gözel M G, et al. Impact of early appropriate antimicrobial therapy on survival in Acinetobacter baumannii bloodstream infections[J]. International Journal of Antimicrobial Agents, 2009, 34(6): 575-579. doi: 10.1016/j.ijantimicag.2009.07.006
Seifert H, Strate A, Pulverer G. Nosocomial bacteremia due to Acinetobacter baumannii: clinical features, epidemiology, and predictors of mortality[J]. Medicine, 1995, 74(6): 340-349. doi: 10.1097/00005792-199511000-00004
Trottier V, Segura P G, Namias N, et al. Outcomes of Acinetobacter baumannii infection in critically ill burned patients[J]. Journal of Burn Care & Research, 2007, 28(2): 248-254.
Wisplinghoff H, Perbix W, Seifert H. Risk factors for nosocomial bloodstream infections due to Acinetobacter baumannii: a case-control study of adult burn patients[J]. Clinical Infectious Diseases, 1999, 28(1): 59-66. doi: 10.1086/515067
Gu T Z, Lu C P, Chen H Q. Acinetobacter baumannii a novel pathogen of acute epidemic in mandarin fish (Siniperca chuatsi)[J]. Microbiology China, 1997, 24(2): 83, 104-106(in Chinese).
Lu W H, Chen H, Wang X D, et al. Identification and phylogenetic analysis of the pathogenic Acinetobacter baumannii from hybridized prussian carp[J]. Chinese Veterinary Science, 2009, 39(4): 303-309(in Chinese).
Xia L, Xiong D M, Gu Z M, et al. Recovery of Acinetobacter baumannii from diseased channel catfish (Ictalurus punctatus) in China[J]. Aquaculture, 2008, 284(1-4): 285-288. doi: 10.1016/j.aquaculture.2008.07.038
Mao Z J, Mao Y Z, Wang J P. Isolation, identification and drug-resistance genes detection of Acinetobacter junii from fish[J]. Journal of Fisheries of China, 2013, 37(10): 1572-1578(in Chinese). doi: 10.3724/SP.J.1231.2013.38707
Kozińska A, Paździor E, Pękala A, et al. Acinetobacter johnsonii and Acinetobacter lwoffii - the emerging fish pathogens[J]. Bulletin of the Veterinary Institute in Pulawy, 2014, 58(2): 193-199. doi: 10.2478/bvip-2014-0029
Li J, Cao J L, Wang X, et al. Acinetobacter pittii, an emerging new multi-drug resistant fish pathogen isolated from diseased blunt snout bream (Megalobrama amblycephala Yih) in China[J]. Applied Microbiology and Biotechnology, 2017, 101(6): 6459-6471.
Wang X, Li J, Cao X J, et al. Isolation, identification and characterisation of an emerging fish pathogen, Acinetobacter pittii, from diseased loach (Misgurnus anguillicaudatus) in China[J]. Antonie van Leeuwenhoek, 2020, 113(1): 21-32. doi: 10.1007/s10482-019-01312-5
Kim M, Oh H S, Park S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2): 346-351.
Kurtz S, Phillippy A, Delcher A L, et al. Versatile and open software for comparing large genomes[J]. Genome Biology, 2004, 5(2): R12. doi: 10.1186/gb-2004-5-2-r12
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45): 19126-19131. doi: 10.1073/pnas.0906412106
Yoon S H, Ha S M, Lim J, et al. A large-scale evaluation of algorithms to calculate average nucleotide identity[J]. Antonie van Leeuwenhoek, 2017, 110(10): 1281-1286. doi: 10.1007/s10482-017-0844-4
Chen J S, Jiang L L, Fang W H. Virulence determinants and its evolution of the genus Listeria[J]. Acta Microbiologica Sinica, 2007, 47(4): 738-742(in Chinese). doi: 10.3321/j.issn:0001-6209.2007.04.035
Ang G Y, Yu C Y, Cheong Y M, et al. Emergence of ST119 Acinetobacter pittii co-harbouring NDM-1 and OXA-58 in Malaysia[J]. International Journal of Antimicrobial Agents, 2016, 47(2): 168-169. doi: 10.1016/j.ijantimicag.2015.11.008
Zhan Y H, Yan Y L, Zhang W, et al. Genome sequence of Acinetobacter calcoaceticus PHEA-2, isolated from industry wastewater[J]. Journal of Bacteriology, 2011, 193(10): 2672-2673. doi: 10.1128/JB.00261-11
Allen T C, Granville L A, Cagle P T, et al. Expression of glutathione S-transferase π and glutathione synthase correlates with survival in early stage non–small cell carcinomas of the lung[J]. Human Pathology, 2007, 38(2): 220-227. doi: 10.1016/j.humpath.2006.07.006
Zhang L H, Wang W, Sun J J, et al. Purification and crystallization of complex of serralysin-like MP and its inhibitor LupI[J]. Progress in Fishery Sciences, 2019(in Chinese). doi: 10.19663/j.issn2095-9869.20190430002
Zhang Y Q. Molecular characterization of the transcriptional regulation of psa locus by PhoP and RovA in Yersinia pestis[D]. Beijing: Academy of Military Medical Sciences, 2011 (in Chinese).
Yin L, Qi K Z, Song X J, et al. Type III secretion system 2 pathogenicity islands of Escherichia coli[J]. Microbiology China, 2017, 44(12): 3031-3037(in Chinese).
Tjalsma H, Antelmann H, Jongbloed J D H, et al. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome[J]. Microbiology and Molecular Biology Reviews, 2004, 68(2): 207-233. doi: 10.1128/MMBR.68.2.207-233.2004
Sargent F. Constructing the wonders of the bacterial world: biosynthesis of complex enzymes[J]. Microbiology, 2007, 153(3): 633-651. doi: 10.1099/mic.0.2006/004762-0
Zschiedrich C P, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction[J]. Journal of Molecular Biology, 2016, 428(19): 3752-3775. doi: 10.1016/j.jmb.2016.08.003
Majumdar T, Chattopadhyay P, Saha D R, et al. Virulence plasmid of Aeromonas hydrophila induces macrophage apoptosis and helps in developing systemic infection in mice[J]. Microbial Pathogenesis, 2009, 46(2): 98-107. doi: 10.1016/j.micpath.2008.11.002
Li X C. Horizontal gene transfer of Rhizobial symbiosis-related genes and fungal secondary metabolic gene clusters[D]. Yangling: Northwest A & F University, 2019 (in Chinese).
Wei D W. Epidemiological investigation and genetic diversity of Vibrio parahaemolyticus isolated from coastal areas of China[D]. Yangling: Northwest A & F University, 2018 (in Chinese).
Jang T N, Lee S H, Huang C H, et al. Risk factors and impact of nosocomial Acinetobacter baumannii bloodstream infections in the adult intensive care unit: a case-control study[J]. Journal of Hospital Infection, 2009, 73(2): 143-150. doi: 10.1016/j.jhin.2009.06.007
Jung J Y, Park M S, Kim S E, et al. Risk factors for multi-drug resistant Acinetobacter baumannii bacteremia in patients with colonization in the intensive care unit[J]. BMC Infectious Diseases, 2010, 10: 228. doi: 10.1186/1471-2334-10-228
Falagas M E, Kasiakou S K, Rafailidis P I, et al. Comparison of mortality of patients with Acinetobacter baumannii bacteraemia receiving appropriate and inappropriate empirical therapy[J]. Journal of Antimicrobial Chemotherapy, 2006, 57(6): 1251-1254. doi: 10.1093/jac/dkl130
Mindlin S, Petrenko A, Kurakov A, et al. Resistance of permafrost and modern Acinetobacter lwoffii strains to heavy metals and arsenic revealed by genome analysis[J]. Biomed Research International, 2016, 2016: 3970831.
Paczosa M K, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense[J]. Microbiology and Molecular Biology Reviews, 2016, 80(3): 629-661. doi: 10.1128/MMBR.00078-15
Li B, Zhao Y L, Liu C T, et al. Molecular pathogenesis of Klebsiella pneumoniae[J]. Future Microbiology, 2014, 9(9): 1071-1081. doi: 10.2217/fmb.14.48
Ko K S. The contribution of capsule polysaccharide genes to virulence of Klebsiella pneumoniae[J]. Virulence, 2017, 8(5): 485-486. doi: 10.1080/21505594.2016.1240862
Clegg S, Murphy C N. Epidemiology and virulence of Klebsiella pneumoniae[J]. Microbiology Spectrum, 2016, 4(1): UTI-0005-2012.
Lowry R, Balboa S, Parker J L, et al. Aeromonas flagella and colonisation mechanisms[J]. Advances in Microbial Physiology, 2014, 65: 203-256. doi: 10.1016/bs.ampbs.2014.08.007
Francetic O, Belin D, Badaut C, et al. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion[J]. The EMBO Journal, 2000, 19(24): 6697-6703. doi: 10.1093/emboj/19.24.6697
Cen X, Ding X Y, Lou K P, et al. The research progress of the bacterial secretion systems[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(3): 317-322, 327(in Chinese).
Weber B, Hasic M, Chen C, et al. Type Ⅵ secretion modulates quorum sensing and stress response in Vibrio anguillarum[J]. Environmental Microbiology, 2009, 11(12): 3018-3028. doi: 10.1111/j.1462-2920.2009.02005.x
Suarez G, Sierra J C, Kirtley M L, et al. Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells[J]. Microbiology, 2010, 156(12): 3678-3688. doi: 10.1099/mic.0.041277-0
Xiao Y Z. Function of type VI secretion system core component VgrG on the pathogenicity of avian Escherichia coli[J]. Microbiology China, 2016, 43(9): 2105(in Chinese).
Grohmann E, Christie P J, Waksman G, et al. Type IV secretion in gram-negative and gram-positive bacteria[J]. Molecular Microbiology, 2018, 107(4): 455-471. doi: 10.1111/mmi.13896
Aguilar J, Zupan J, Cameron T A, et al. Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3758-3763. doi: 10.1073/pnas.0914940107
Wang Y M. Functional characteration of Edwardsiella tarda twin-arginine translocation system[D]. Shanghai: East China University of Science and Technology, 2013 (in Chinese).
De Buck E, Lammertyn E, Anné J. The importance of the twin-arginine translocation pathway for bacterial virulence[J]. Trends in Microbiology, 2008, 16(9): 442-453. doi: 10.1016/j.tim.2008.06.004
Economou A. Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme[J]. Molecular Microbiology, 1998, 27(3): 511-518. doi: 10.1046/j.1365-2958.1998.00713.x
Konisky J. Colicins and other bacteriocins with established modes of action[J]. Annual Review of Microbiology, 1982, 36: 125-144. doi: 10.1146/annurev.mi.36.100182.001013
Shon A S, Bajwa R P S, Russo T A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae[J]. Virulence, 2013, 4(2): 107-118. doi: 10.4161/viru.22718
Li Y F, Bai H, Peng K S, et al. Relationship between the iron uptake function of high pathogenicity island and the pathogenicity of avian pathogenic Escherichia coli strains[J]. Chinese Veterinary Science, 2012, 42(9): 906-910(in Chinese).
Osorio C R, Juiz-Río S, Lemos M L. A siderophore biosynthesis gene cluster from the fish pathogen Photobacterium damselae subsp. piscicida is structurally and functionally related to the Yersinia high-pathogenicity island[J]. Microbiology, 2006, 152(11): 3327-3341. doi: 10.1099/mic.0.29190-0
Hacker J, Blum-Oehler G, Mühldorfer I, et al. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution[J]. Molecular Microbiology, 1997, 23(6): 1089-1097. doi: 10.1046/j.1365-2958.1997.3101672.x
Carniel E, Guilvout I, Prentice M. Characterization of a large chromosomal "high-pathogenicity island" in biotype 1B Yersinia enterocolitica[J]. Journal of Bacteriology, 1996, 178(23): 6743-6751. doi: 10.1128/JB.178.23.6743-6751.1996
Lv Y Z. Virulence regulation by two-component systems in Edwardsiella tarda[D]. Shanghai: East China University of Science and Technology, 2013 (in Chinese).
Beier D, Gross R. Regulation of bacterial virulence by two-component systems[J]. Current Opinion in Microbiology, 2006, 9(2): 143-152. doi: 10.1016/j.mib.2006.01.005