• 期刊收录
  • 论文
  • 水产名词
  • 专家库

ISSN 1000-0615

主管 中国科学技术协会

主办 中国水产学会

“翻背症”对方斑东风螺主要消化酶及免疫相关酶的影响

赵旺 杨蕊 吴开畅 于刚 陈明强 郑忠明 温为庚

上一篇

下一篇

赵旺, 杨蕊, 吴开畅, 于刚, 陈明强, 郑忠明, 温为庚. 2020. “翻背症”对方斑东风螺主要消化酶及免疫相关酶的影响. 水产学报, 44(9): 1502-1512. doi: 10.11964/jfc.20190911972
引用本文: 赵旺, 杨蕊, 吴开畅, 于刚, 陈明强, 郑忠明, 温为庚. 2020. “翻背症”对方斑东风螺主要消化酶及免疫相关酶的影响. 水产学报, 44(9): 1502-1512. doi: 10.11964/jfc.20190911972
Wang ZHAO, Rui YANG, Kaichang WU, Gang YU, Mingqiang CHEN, Zhongming ZHENG, Weigeng WEN. 2020. Effects of “reverse back syndrome” on main digestive enzymes and immune-related enzymes in Babylonia areolata. Journal of Fisheries of China, 44(9): 1502-1512. doi: 10.11964/jfc.20190911972
Citation: Wang ZHAO, Rui YANG, Kaichang WU, Gang YU, Mingqiang CHEN, Zhongming ZHENG, Weigeng WEN. 2020. Effects of “reverse back syndrome” on main digestive enzymes and immune-related enzymes in Babylonia areolata. Journal of Fisheries of China, 44(9): 1502-1512. doi: 10.11964/jfc.20190911972

“翻背症”对方斑东风螺主要消化酶及免疫相关酶的影响

  • 基金项目:

    海南省自然科学基金青年基金(318QN304);现代农业产业技术体系建设专项(CARS-49);三亚市院地科技合作项目(2018YD19,2019YD21);农业农村部财政专项(NHYYSWZZZYKZX2020)

详细信息

Effects of “reverse back syndrome” on main digestive enzymes and immune-related enzymes in Babylonia areolata

  • Fund Project: 海南省自然科学基金青年基金(318QN304);现代农业产业技术体系建设专项(CARS-49);三亚市院地科技合作项目(2018YD19,2019YD21);农业农村部财政专项(NHYYSWZZZYKZX2020)
More Information
  • 为探索方斑东风螺消化及免疫系统对“翻背症”的应答机制,采集了健康(对照组)和“翻背症”早期、中期和晚期的方斑东风螺,采用TCBS平板计数法检测螺体内弧菌含量,试剂盒法检测螺体内组织超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、酸性磷酸酶(ACP)、碱性磷酸酶(AKP)、溶菌酶(LZM)等免疫相关酶和胃蛋白酶、脂肪酶、淀粉酶等消化酶活性。结果显示,方斑东风螺体内弧菌含量随病情的发展而显著增加,晚期达到最大值。发病早期,CAT、SOD、POD、ACP和胃蛋白酶等酶活性均显著上升。发病中期,POD、AKP、LZM活性均上升,且显著高于对照组和发病早期;与发病早期相比,CAT、SOD、ACP、胃蛋白酶、脂肪酶活性有所下降;与对照组相比,CAT、ACP活性仍显著升高,胃蛋白酶、脂肪酶活性显著降低,而SOD、淀粉酶活性无显著变化。发病晚期,各消化酶与免疫相关酶活性均较发病中期有所下降,但POD、ACP活性仍显著高于对照组,CAT、SOD、AKP、LZM活性与对照组无显著差异,而胃蛋白酶、脂肪酶、淀粉酶活性显著低于对照组。研究表明,“翻背症”方斑东风螺体内弧菌的暴发过程中,机体的免疫系统与消化系统均参与了机体病害免疫应答反应,且可以采用CAT、POD和ACP活性作为方斑东风螺“翻背症”的检测评价指标。
  • 加载中
  • 图 1  方斑东风螺体内弧菌含量变化

    Figure 1.  Changes of Vibrio content in B. areolata

    图 2  “翻背症”对方斑东风螺抗氧化酶活性的影响

    Figure 2.  Effect of RBS on the anti-oxidase activity of B. areolata

    图 3  “翻背症”对方斑东风螺磷酸酶、溶菌酶活性的影响

    Figure 3.  Effect of RBS on the phosphatase and LZM activity of B. areolata

    图 4  “翻背症”对方斑东风螺消化酶活性的影响

    Figure 4.  Effect of RBS on the digestive enzyme activity of B. areolata

    表 1  “翻背症”方斑东风螺消化及免疫相关酶活性对弧菌含量的回归分析

    Table 1.  Regression analysis of digestion and immune-related enzyme activity on Vibrio content of RBS of B. areolata


    enzyme
    R2FP回归方程系数 coefficient of regression equation
    b0b1b2b3
    CAT 0.835 22.721 0 −1 713.081 444.289 0 −3.800
    SOD 0.442 3.564 0.072 −412.673 124.610 0 −1.040
    POD 0.780 15.956 0.001 −7 111.196 1 744.026 0 −14.377
    ACP 0.767 14.836 0.001 −13 474.571 4 366.968 −345.580 0
    AKP 0.390 2.875 0.108 −4 489.302 1 121.022 0 −9.520
    LZM 0.438 3.502 0.075 −4 685.078 1 176.620 0 −10.184
    胃蛋白酶 pepsin 0.489 4.312 0.049 −2 196.170 578.656 0 −5.330
    脂肪酶 lipase 0.622 7.411 0.013 −1 148.332 318.686 0 −3.033
    淀粉酶 amylase 0.440 3.531 0.074 −148.224 65.229 0 −0.663
    下载: 导出CSV
  • Zhao W, Yu G, Wang J Y, et al. Path analysis of the effects of morphometric attributes on the body weight of 7-month-old Babylonia areolata[J]. Marine Sciences, 2017, 41(11): 82-88(in Chinese). doi: 10.11759/hykx20170714003

    Zhang X Z, Wen W Y, Feng Y Q, et al. Isolation, identification and antibiotic sensitivity analysis of bacterial pathogen from proboscis intumescence disease in Babylonia areolata[J]. Marine Sciences, 2010, 34(5): 7-12(in Chinese).

    Wang J Y, Wang R X, Su Y L, et al. Pathogen and pathology of “acute death syndrome” of Babylonia areolata[J]. South China Fisheries Science, 2013, 9(5): 93-99(in Chinese). doi: 10.3969/j.issn.2095-0780.2013.05.015

    Liang J, Gao S, Li Y R, et al. Isolation of pathogenic bacteria from proboscis intumescence disease in Babylonia areolata and the preventive effect of Chinese herbs[J]. Jiangsu Agricultural Sciences, 2016, 44(11): 267-269(in Chinese).

    Zhao W, Wu K C, Wang J Y, et al. Pathogen and treatment of “reverse back syndrome” of whelk Babylonia areolata[J]. Fisheries Science, 2016, 35(5): 552-556(in Chinese).

    Peng J S, Ge X P, Li M, et al. Study on haplosporidium disease of Babylonia areolata[J]. Acta Hydrobiologica Sinica, 2011, 35(5): 803-807(in Chinese).

    Liu Q H, Wang S F, Cai Y, et al. Isolation, identification and antibiotic sensitivity analysis of bacterial pathogen from cultured Babylonia areolata with fulminant infectious disease in Hainan[J]. Progress in Fishery Sciences, 2014, 35(1): 74-81(in Chinese). doi: 10.3969/j.issn.1000-7075.2014.01.011

    Liu X J, Wang R X, Ling H, et al. Studies on the pathogenic bacteria and their virulence factors of “acute death syndrome” in Babylonia areolata[J]. Marine Environmental Science, 2019, 38(1): 7-15(in Chinese). doi: 10.12111/j.mes20190102

    National Health and Family Planning Commission of PRC, China Food and Drug Administration. GB 4789.2—2016. National food safety standard, food microbiological examinationg: aerobic plate count[S]. Beijing: Standards Press of China, 2016: 3-4 (in Chinese).

    Chang J. Studies on sensitive immunology parameters screening and evaluation in white shrimp Litopenaeus vannamei and sea cucumber Apostichopus japonicus Selenka[D]. Qingdao: Ocean University of China, 2010 (in Chinese).

    Rojas R, Miranda C D, Opazo R, et al. Characterization and pathogenicity of Vibrio splendidus strains associated with massive mortalities of commercial hatchery-reared larvae of scallop Argopecten purpuratus (Lamarck, 1819)[J]. Journal of Invertebrate Pathology, 2015, 124: 61-69. doi: 10.1016/j.jip.2014.10.009

    Sawabe T, Inoue S, Fukui Y, et al. Mass mortality of Japanese abalone Haliotis discus hannai caused by Vibrio harveyi infection[J]. Microbes and Environments, 2007, 22(3): 300-308. doi: 10.1264/jsme2.22.300

    Travers M A, Tourbiez D, Parizadeh L, et al. Several strains, one disease: experimental investigation of Vibrio aestuarianus infection parameters in the Pacific oyster, Crassostrea gigas[J]. Veterinary Research, 2017, 48(1): 32. doi: 10.1186/s13567-017-0438-1

    Ling H, Zhao W, Wang R X, et al. Physical-chemical factors associated with the dynamic change of bacterial quantity of alimentary tract and environment in Babylonia areolate industrial aquaculture[J]. Marine Environmental Science, 2018, 37(1): 62-69(in Chinese).

    Ge M F, Zheng X Y, Wang G L. Detection of pathogenic vibrios infection in Larimichthys crocea and its forecast and warning of disease[J]. Journal of Fisheries of China, 2014, 38(12): 2068-2074(in Chinese).

    An P, Wang Y G, Liao M J, et al. Histopathological characteristics, pathogen, and drug sensitivity of vibrionic necrosis disease in the golden cuttlefish (Sepia esculenta)[J]. Journal of Fishery Sciences of China, 2019, 26(1): 193-202(in Chinese). doi: 10.3724/SP.J.1118.2019.18093

    Zhang C W. Study on the immunogenicity of Vibrio harveyi outer membrane protein (OmpK and GAPDH) and screening of cross protective immunogens of outer membrane protein from several main marine pathogenetic vibrios[D]. Hangzhou: Zhejiang University, 2007 (in Chinese).

    Mohamad N, Amal M N A, Yasin I S M, et al. Vibriosis in cultured marine fishes: a review[J]. Aquaculture, 2019, 512: 734289. doi: 10.1016/j.aquaculture.2019.734289

    Rivas A J, Balado M, Lemos M L, et al. Synergistic and additive effects of chromosomal and plasmid-encoded hemolysins contribute to hemolysis and virulence in Photobacterium damselae subsp. damselae[J]. Infection and Immunity, 2013, 81(9): 3287-3299. doi: 10.1128/IAI.00155-13

    Han Y F, Mo Z L, Xiao P, et al. Characterization of EmpA protease in Vibrio anguillarum M3[J]. Journal of Ocean University of China, 2011, 10(4): 379-384. doi: 10.1007/s11802-011-1781-x

    Li G X, Zhang C D. Research progress of pathogenic factors and detection techniques of Vibrio harveyi[J]. Science and Technology of Food Industry, 2019, 40(6): 319-322, 329(in Chinese).

    Choudhury F K, Rivero R M, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5): 856-867. doi: 10.1111/tpj.13299

    Martínez-lvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors[J]. Reviews in Fish Biology and Fisheries, 2005, 15(1-2): 75-88. doi: 10.1007/s11160-005-7846-4

    Wang H L, Wen H S, Huang J S, et al. Analyses of antioxidant enzyme activity and physiological function of Lateolabrax maculatus at early developmental stage[J]. Transactions of Oceanology and Limnology, 2018(5): 109-117(in Chinese).

    Yan J X, Li Y N, Yu G, et al. Responses of antioxidant system in pearl oyster Pteria pengiun to copper exposure[J]. Fisheries Science, 2018, 37(4): 494-498(in Chinese).

    Hu J, Wu K C, Ye L, et al. Effect of acute salinity stress on catalase of juvenile Amphiprion clarkii[J]. South China Fisheries Science, 2015, 11(6): 73-78(in Chinese). doi: 10.3969/j.issn.2095-0780.2015.06.010

    Meng X P, Meng Y, Wang Y, et al. Effects of probiotics on immunologic functions and intestinal microflora in Pacific white leg shrimp Litopenaeus vannamei[J]. Fisheries Science, 2017, 36(1): 60-65(in Chinese).

    Dong X Q, Zhang D M, Chen Y K, et al. Effects of antimicrobial peptides (AMPs) on blood biochemical parameters, antioxidase activity, and immune function in the common carp (Cyprinus carpio)[J]. Fish & Shellfish Immunology, 2015, 47(1): 429-434.

    Chen Z, Jiang J W, Gao S, et al. Response of immune-related enzyme activities in the coelomocytes of juvenile sea cucumber Apostichopus japonicus challenged with different pathogenic bacteria[J]. Fisheries Science, 2018, 37(3): 295-300(in Chinese).

    Jiang J W, Cong C, Dong Y, et al. The variation of immune-related enzyme activities in the coelomic fluid of sea cucumber (Apostichopus japonicus) after challenge with different bacteria[J]. Chinese Journal of Zoology, 2015, 50(6): 947-956(in Chinese).

    Yang C Y, Hao R J, Deng Y W, et al. Effects of protein sources on growth, immunity and antioxidant capacity of juvenile pearl oyster Pinctada fucata martensii[J]. Fish & Shellfish Immunology, 2017, 67: 411-418.

    Wang S P, Kong X H, Jiang H X, et al. Changes in activities of acid phosphatase and alkaline phosphatase during embryonic development of goldfish, Carassius auratus[J]. Fisheries Science, 2011, 30(7): 405-408(in Chinese). doi: 10.3969/j.issn.1003-1111.2011.07.008

    Luo K Y, Liu X X, Ge D Y, et al. Effect of Vibrio anguillarum on activity and gene expression of glutathione s-transferases in Cyclina sinensis[J]. Oceanologia et Limnologia Sinica, 2012, 43(4): 735-740(in Chinese). doi: 10.11693/hyhz201204008008

    Fan Z J, Yang A G, Lv Z M, et al. Effects of Vibrio anguillarum on immune activities of Chlamys farreri[J]. South China Fisheries Science, 2007, 3(6): 52-55(in Chinese).

    Zhang Q R, Chen Q X, Zheng W Z, et al. Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase activity by dithiothreitol or 2-mercaptoethanol[J]. The International Journal of Biochemistry & Cell Biology, 2000, 32(8): 865-872.

    Liburdi K, Benucci I, Esti M. Lysozyme in wine: an overview of current and future applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(5): 1062-1073. doi: 10.1111/1541-4337.12102

    Qiu B D. The response of c-type and g-type lysozyme in Large yellow croaker (Larimichthys crocea) to Vibrio anguillarum[D]. Zhoushan: Zhejiang Ocean University, 2016 (in Chinese).

    Wang R J, Feng J B, Li C, et al. Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection[J]. Fish & Shellfish Immunology, 2013, 35(1): 136-145.

    Yue X. Vibrio disease, anti-vibrio immunity and vibrio-resistance selective breeding of clam Meretrix meretrix[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2011 (in Chinese).

    Zhang Q. The analysis of the immunologic function, isopeptidase activity and detection of the key sites of the antibacterial activity for the Stichopus japoicus lysozyme[D]. Dalian: Dalian Polytechnic University, 2017 (in Chinese).

    Natalia Y, Hashim R, Ali A, et al. Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae)[J]. Aquaculture, 2004, 233(1-4): 305-320. doi: 10.1016/j.aquaculture.2003.08.012

    Zhou P P, Wang M Q, Xie F J, et al. Effects of dietary carbohydrate to lipid ratios on growth performance, digestive enzyme and hepatic carbohydrate metabolic enzyme activities of large yellow croaker (Larmichthys crocea)[J]. Aquaculture, 2016, 452: 45-51. doi: 10.1016/j.aquaculture.2015.10.010

    Hoseinifar S H, Dadar M, Ringø E. Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario[J]. Aquaculture Research, 2017, 48(8): 3987-4000. doi: 10.1111/are.13368

    Xue M, Ke C H, Wei Y J. Effects of starvation on biochemical compositions and digestive enzyme activities of spotted babylon, Babylonia areolata juveniles[J]. Journal of Tropical Oceanography, 2010, 29(3): 120-125(in Chinese). doi: 10.3969/j.issn.1009-5470.2010.03.020

    Wei Y J. Studies on larval feeding ecophysiology of lvory shell, Babylonia areolata Link[D]. Xiamen: Xiamen University, 2007 (in Chinese).

    Zhao W, Tan C M, Zhang Y, et al. Effect of salinity stress on the activities of actions and digestive enzymes of Babylonia areolata[J]. Fishery Modernization, 2019, 46(5): 41-45(in Chinese). doi: 10.3969/j.issn.1007-9580.2019.05.007

    Zhou Q C, Zhou J B, Chi S Y, et al. Effect of dietary lipid level on growth performance, feed utilization and digestive enzyme of juvenile ivory shell, Babylonia areolate[J]. Aquaculture, 2007, 272(1-4): 535-540. doi: 10.1016/j.aquaculture.2007.07.236

    Liang X, Zhang Y, Liu Y Z, et al. Influence of Vibrio splendidus on immune indexes and digestive enzyme activity of Mytilus coruscus[J]. Journal of Fisheries of China, 2018, 42(9): 1438-1445(in Chinese).

    Xu Y J, Shan H W, Ma S. Effects of Bacillus sp. and Vibrio alginolyticus on the activities of digestive and immune enzymes disease resistance of Litopenaeus vannamei[J]. Periodical of Ocean University of China, 2015, 45(5): 46-53(in Chinese).

    De Schrijver R, Ollevier F. Protein digestion in juvenile turbot (Scophthalmus maximus) and effects of dietary administration of Vibrio proteolyticus[J]. Aquaculture, 2000, 186(1-2): 107-116. doi: 10.1016/S0044-8486(99)00372-5

    Chen X F. Effects of different feed additives on the growth and digestive enzyme activity of Babylonia lutosa[J]. Journal of Fujian Fisheries, 2015, 37(4): 301-307(in Chinese).

    Xue M, Ke C H, Wang D X, et al. Effects of starvation and recovery on growth, proximate composition and RNA/DNA ratio in juvenile spotted ivory shell (Babylonia areolata)[J]. Journal of Fisheries of China, 2010, 34(3): 481-488(in Chinese). doi: 10.3724/SP.J.1231.2010.06558

    Xian J A, Chen J, Zhang X X, et al. Effects of dietary Lactobacillus on growth performance, muscle composition and immunity of Babylonia areolata[J]. Hebei Fisheries, 2016(1): 1-4, 34(in Chinese). doi: 10.3969/j.issn.1004-6755.2016.01.001

    Xian J A, Chen J, Zhang X X, et al. Effects of dietary Bacillus subtilis on growth performance, muscle composition and immunity of Babylonia areolata[J]. Feed Industry, 2016, 37(4): 5-9(in Chinese).

(4)

(1)

计量
  • 文章访问数:  814
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2019-09-17
修回日期:  2020-02-02

目录

/

返回文章
返回
本系统由北京仁和汇智信息技术有限公司 开发